Doktora Tezleri
Permanent URI for this collectionhttps://hdl.handle.net/20.500.12416/9487
Browse
Browsing Doktora Tezleri by Author "Bıkmaz, Erdoğan"
Now showing 1 - 1 of 1
- Results Per Page
- Sort Options
Doctoral Thesis İnce Ayarlanmış RAG Bileşenlerini Kullanarak Türkçe Veri Setleri için Yeni Bir Füzyon Yöntemi ile Yeniden Sıralama Konfigürasyonu(2025) Bıkmaz, Erdoğan; Arslan, SerdarBu çalışma, Türkçe için, özellikle de tıp alanında, Retrieval-Augmented Generation (RAG) sistemlerinin çok dilli yeteneklerindeki boşluğu ele almaktadır. Büyük Dil Modellerinin (LLM'ler) yükselişi ve yaygın uygulamalarıyla, halüsinasyonları azaltmak ve yanıt doğruluğunu artırmak için, harici bilgilere dayalı retrieval (geri çağırma) bileşenlerinin kullanımı kritik bir hale gelmiştir. Ancak, mevcut retrieval bileşenlerinin çoğu (embedding'ler ve reranker'lar dahil olmak üzere) ağırlıklı olarak İngilizce veri setleri üzerinde eğitilmiştir, bu da çok dilli ve alana özgü yetenekler açısından önemli bir sınırlamayı ortaya koymaktadır. Bu durumu ele almak için, bu çalışma kapsamında Türkçe tıbbi bir veri seti olan Pubmed-RAG-TR ve popüler bir Türkçe RAG veri seti olan WikiRAG-TR [36] kullanılarak retrieval bileşenleri ince ayar (fine-tuning) ile geliştirilmiştir. Ayrıca, LLM'ler için bağlam oluşturmayı iyileştirmek amacıyla yeni bir RRF (Reciprocal Rank Fusion) tabanlı reranker pipeline'ı geliştirilmiştir. Deneysel sonuçlar, retrieval bileşenlerinin alana özgü veri setleri üzerinde ince ayar yapılmasının, retrieval ve post-retrieval kalitesini önemli ölçüde artırdığını ve LLM yanıtlarının doğruluğunu iyileştirdiğini göstermiştir. Çalışma, alana özgü semantiğin retrieval ve reranking modellerine dahil edilmesinin, çok dilli bağlamlarda RAG sistemlerinin performansını önemli ölçüde artırabileceği sonucuna varmaktadır.
