Browsing by Author "Jumaili, Sufian Hamid Salih Al"
Now showing 1 - 1 of 1
- Results Per Page
- Sort Options
Master Thesis Akıllı Ulaşım Sistemlerinde Trafik Akışı Tahmini için LSTM ve Gradyan Yükseltme ile Hibrit Bir Topluluk Yaklaşımı(2025) Jumaili, Sufian Hamid Salih Al; Görür, Abdül KadirArka Plan: Trafik akışı tahmini, modern ulaşım sistemlerinin karşı karşıya olduğu en kritik sorunlardan biridir. Bu konu, trafik sıkışıklığının azaltılması, trafik ışıklarının optimizasyonu ve kentsel hareketliliğin geliştirilmesi açısından büyük önem taşımaktadır. Ancak, trafik akışlarının zamansal durumlar, meteorolojik koşullar ve özel olaylar gibi değişkenlerden etkilenerek dinamik ve doğrusal olmayan bir yapı sergilemesi, tahmin sürecini oldukça karmaşık hale getirmektedir. İstatistiksel modeller ve tekil makine öğrenimi yaklaşımları gibi geleneksel yöntemler, trafik verilerinde mevcut olan karmaşık zamansal bağımlılıkları ve doğrusal olmayan ilişkileri yeterince yakalayamamaktadır. Amaç: Bu tez, geleneksel trafik akışı tahmin modellerinin sınırlılıklarını önerilen yeni bir hibrit model ile aşmayı hedeflemektedir. Bu amaçla, Gradient Boosting, LightGBM ve Uzun Kısa Süreli Bellek (LSTM) ağlarının güçlü yönlerini bir araya getiren önerilen hibrit yaklaşım ile tahmin doğruluğu ve dayanıklılığının artırılması amaçlanmaktadır. Yöntem: Çalışmada, Huawei Münih Araştırma Merkezi (HMRC) tarafından yayımlanan Karayolu Trafik Tahmin Veriseti kullanılmıştır. Veri seti, 56 gün boyunca altı kentsel kavşakta toplanmış zamansal trafik akışı ölçümlerini içermektedir. Veri seti ön işleme tabi tutulmuş ve parametrik yöntemler, Makine Öğrenimi (ML) teknikleri, Derin Öğrenme (DL) mimarileri ve kollektiv (ensemble) öğrenme modelleri dahil olmak üzere çeşitli modellerin eğitim ve test aşamalarında . kullanılmıştır. Model performansı; Ortalama Mutlak Hatası (MAE), Kök Ortalama Kare Hatası (RMSE), R-kare (R²), Ortalama Mutlak Yüzde Hatası (MAPE) ve Açıklanan Varyans Skoru (EVS) gibi standart regresyon metrikleri ile değerlendirilmiştir. Bulgular: Önerilen hibrit model, tüm temel modelleri daha yüksek doğruluk ve güvenilirlik ile geride bırakmıştır. Model, R² = 0.9684, MAE = 8.27 ve RMSE = 12.54 değerlerine ulaşarak parametrik, makine öğrenimi ve derin öğrenme modellerine kıyasla tüm değerlendirme kriterlerinde üstün performans sergilemiştir. Gradient Boosting, LightGBM ve LSTM gibi tekil modellere kıyasla daha kararlı sonuçlar üretmiş ve hata oranlarını önemli ölçüde azaltmıştır. Bu durum, farklı öğrenme paradigmalarının sinerjisiyle elde edilen kazanımlara işaret etmektedir. Ayrıca hibrit model, yoğun ve seyrek trafik zamanları gibi değişken trafik desenlerinde dahi yüksek performans sergileyerek değişen trafik koşullarına karşı dayanıklılığını kanıtlamıştır. Bulgular, topluluk öğrenme yöntemlerinin derin öğrenme teknikleri ile birlikte uygulandığında, kentsel trafik akışının karmaşık zamansal ve doğrusal olmayan dinamiklerini başarıyla modelleyebildiğini ve böylece tahmin edilebilirlik ile genellenebilirliğin optimize edildiğini ortaya koymaktadır. Sonuç: Tez bulguları, trafik akışı tahmini ve kentsel ulaşım yönetimi açısından önemli katkılar sunmaktadır. Önerilen hibrit yöntem, birden fazla modelleme yaklaşımını bütünleştirerek trafik akışı davranışını daha eksiksiz ve doğru şekilde yansıtan bir çözüm sunmaktadır. Bununla birlikte, çalışmada verideki gürültü ve gerçek zamanlı uygulama gereksinimleri gibi geleceğe yönelik araştırma alanlarına da dikkat çekilmiştir. Özetle, bu tez çalışması, akıllı ulaşım sistemleri (AUS) alanına hibrit yöntemlerin etkinliğini göstererek anlamlı bir katkı sağlamaktadır. Önerilen hibrit model, AUS alanında yapılacak gelecekteki araştırmalar için yeni bir referans noktası oluşturmaktadır.
