Browsing by Author "Lopez de Hierro, Antonio Francisco Roldan"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Article Ample Spectrum Contractions in Branciari Distance Spaces(Yokohama Publ, 2021) Karapinar, Erdal; Karapınar, Erdal; Lopez de Hierro, Antonio Francisco Roldan; Shahzad, Naseer; MatematikVery recently, the notion of ample spectrum contraction has been introduced in order to unify, under the same axioms, a large number of contractive mappings that have had great success in the field of Fixed Point Theory in recent years and that have been used in a wide variety of applications in Nonlinear Analysis (Meir-Keeler contractions, Geragthy contractions, contractions under simulation functions, contractions under R-functions, etc.) However, the subtle conditions that define ample spectrum contractions cannot be extended as they are to new kinds of abstract metric spaces because they involve key properties that are only fulfilled in metric spaces. In this paper, based on a very recent work in which the authors unravel the essential properties of the topology in Branciari spaces, we investigate the reasons why the proposed axiomatic fails in Branciari spaces and we illustrate how to overcome such drawbacks. As a consequence, we characterize the notion of ample spectrum contraction in the setting of Branciari distance spaces and we also investigate the existence and uniqueness of fixed points for such family of contractions in the context of complete Branciari distance spaces.Article Citation - WoS: 20Citation - Scopus: 30Fixed Point Theory in the Setting of (α,β,ψ,φ)-Interpolative Contractions(Springer, 2021) Fulga, Andreea; Lopez de Hierro, Antonio Francisco Roldan; Erdal KarapinarIn this manuscript we introduce the notion of (alpha,beta,psi,phi)-interpolative contraction that unifies and generalizes significant concepts: Proinov type contractions, interpolative contractions, and ample spectrum contraction. We investigate the necessary and sufficient conditions to guarantee existence and uniqueness of the fixed point of such mappings.Article Citation - WoS: 15Citation - Scopus: 15Multiparametric Contractions and Related Hardy-Roger Type Fixed Point Theorems(Mdpi, 2020) Karapinar, Erdal; Fulga, Andreea; Lopez de Hierro, Antonio Francisco RoldanIn this paper we present some novel fixed point theorems for a family of contractions depending on two functions (that are not defined on t = 0) and on some parameters that we have called multiparametric contractions. We develop our study in the setting of b-metric spaces because they allow to consider some families of functions endowed withb-metrics deriving from similarity measures that are more general than norms. Taking into account that the contractivity condition we will employ is very general (of Hardy-Rogers type), we will discuss the validation and usage of this novel condition. After that, we introduce the main results of this paper and, finally, we deduce some consequences of them which illustrates the wide applicability of the main results.
