Elektrik Elektronik Mühendisliği Bölümü
Permanent URI for this communityhttps://hdl.handle.net/20.500.12416/410
Browse
Browsing Elektrik Elektronik Mühendisliği Bölümü by Department "Çankaya University"
Now showing 1 - 20 of 116
- Results Per Page
- Sort Options
Article Citation - WoS: 4Citation - Scopus: 5Accurate Method To Calculate Noise Figure in a Low Noise Amplifier: Quantum Theory Analysis(Elsevier Sci Ltd, 2022) Salmanogli, Ahmad; Gecim, H. SelcukIn this study, a low-noise amplifier is quantum-mechanically analyzed to study the behavior of the noise figure. The analysis view has been changed from classic to quantum, because using quantum theory produces some degrees of freedom, which may be ignored when a circuit is analyzed using classical theory. For this purpose, the Lagrangian is initially derived by considering the related nonlinearity of the transistor, and then using the Legendre transformation and canonical quantization procedure, the quantum Hamiltonian is derived. As an interesting point of this study, the low-noise amplifier is deliberately considered as two oscillators connecting to each other to share the photonic modes between them; accordingly, the voltage and current as measurable observations and the noise figure as a critical quantity in a low-noise amplifier are theoretically expressed in terms of the oscillator's mean photon number. The main goal of this work is to study quantities such as the noise figure in a sufficient detail using quantum theory. In addition, as an advantage of this theory, one can control and manipulate the noise figure only by manipulation of the oscillator's mean photon number and coupling it between two oscillators. Finally, the circuit is classically designed and simulated to verify the derived results using quantum theory. The comparison results show that there is a partial consistency between the two approaches; as the frequency increases, the noise figure becomes minimized at a particular frequency.Article Citation - WoS: 10Citation - Scopus: 12Adaptive Optics Corrections of Scintillations of Hermite-Gaussian Modes in an Oceanic Medium(Optical Soc Amer, 2020) Baykal, YahyaAdaptive optics correction of the scintillation index is found when Hermite-Gaussian laser beams are used in oceanic turbulence. Adaptive optics filter functions are used to find how the tilt, focus, astigmatism, coma, and total correction will behave under high order mode excitation. Reduction of the oceanic scintillation under various oceanic turbulence and system parameters is examined under different high order modes. Also, the effects of the source size, wavelength, and link length on the total adaptive optics correction of Hermite-Gaussian modes in an oceanic medium are investigated for different modes. (C) 2020 Optical Society of AmericaArticle Citation - WoS: 14Citation - Scopus: 16Adaptive Optics Effect on Performance of Bpsk-Sim Oceanic Optical Wireless Communication Systems With Aperture Averaging in Weak Turbulence(Pergamon-elsevier Science Ltd, 2020) Baykal, Yahya; Ata, Yalcin; Gokce, Muhsin CanerTurbulence-induced wavefront deformations cause the irradiance of an optical signal to fluctuate resulting a in serious degradation in the bit-error-rate (BER) performance of optical wireless communication (OWC) system. Adaptive optics is an effective technique to compensate for the wavefront aberrations to reduce the fluctuations in the received intensity. In this paper, we investigate how the adaptive optics technique affects the BER performance of an oceanic OWC (OOWC) system employing binary phase shift keying-subcarrier intensity modulation (BPSK-SIM) and aperture averaging. To evaluate BER performance in weak oceanic turbulence, the required entities such as the received optical power captured by a circular aperture and the aperture averaged scintillation index measuring the fluctuations in the received irradiance are derived. The effect of adaptive optics correction of various wavefront aberrations (i.e., tilt, defocus, astigmatism and the coma) on the BER performance is illustrated and the performance of the adaptive optics-OOWC system is compared to that of a non-adaptive optics OOWC system by the metric defined. (C) 2020 Elsevier Ltd. All rights reserved.Article Amorf Çekirdekli Transformatörün Çoklu Fizik Yöntemiyle Elektromanyetik - Sıcaklık Analizi(2021) Najafi, Atabak; İskender, İresBu makalede, Amorf nüveli transformatörün sıcaklık analizini detaylı incelemek için, ısı transferi, akışkan akışı ve elektromanyetik analizlerini kapsayan çok disiplinli bir yaklaşım kullanılmıştır. Transformatörün bobini ve çekirdeğindeki güç kayıpları incelenip, sıcaklık ve akışkan akış analizleri elektromanyetik bir model ile birleştirilmiştir. Önerilen yöntem, Amorf çekirdekli gibi özel transformatörlerde, önceki noktasal sıcaklık bilgisine ya da sıcaklık Gradyan değerlerine ihtiyaç duymadan, sıcaklık değişimini detaylı olarak tahmin edebilmektedir. Teorik çalışma sonuçları uluslararası standartlara göre Dyn11, 34.5/0.4-kV, 630-kVA’lik amorf çekirdekli transformatör üzerine uygulanan deneysel çalışma sonuçlarıyla doğrulanmıştır. Teorik ve pratik çalışma sonuçlarının karşılaştırılması, sonuçların büyük bir uyum içinde olduğunu göstermekte olup, kullanılan yöntem genç mühendislere güç transformatörlerin sıcaklık analiz çalışmalarında faydalı bir araç oluşturmaktadır.Conference Object Citation - Scopus: 4Analysis of Short Circuit Electromagnetic Force in a Three Winding Transformer Used in Solar System(Institute of Electrical and Electronics Engineers Inc., 2021) Iskender, I.; Jahi, A.Due to the increasing of the fossil fuels prices in the past years and lack of these sources, all scientists encouraged to looking for the alternative energy sources. One of these energy sources is renewable solar energy. Power transmission from solar systems to grid is achieved using step up transformers. This type of transformer is energized from two inverter with or without variable frequency. Power transformers are deals with a variety of mechanical, electrical and thermal stresses during normal life time operation. Transient electromagnetic forces cause mechanical stress on transformer parameters where calculation of these forces with traditional methods is extremely complex due to the geometry of the transformer. Accordingly in this study, the electromagnetic forces takes place in the windings of a Photovoltaic (PV) transformer are investigated and for calculation of these forces, the 3D and 2D model of transformer is adapted in the ANSYS Workbench. The analysis of electromagnetic forces during the three line fault on high voltage side of the transformer are performed by the Finite Element Method (FEM) and compared with the analytical results. The numerical modeling technique discussed in this study would be useful in the design stage of PV transformer with regard to evaluate ability of transformer to withstand the short circuit current. © 2021 Chamber of Turkish Electrical Engineers.Article Citation - WoS: 4Citation - Scopus: 5Analysis of Wander and Spreading of an Optical Beam by Using the Oceanic Turbulence Optical Power Spectrum(Optica Publishing Group, 2022) Baykal, Yahya; Gokce, Muhsin Caner; Ata, YalcInVariance of beam displacement and short-term and long-term spreading of a Gaussian beam propagating in the presence of underwater turbulence are examined by using the oceanic turbulence optical power spectrum (OTOPS). Analytical expressions for both beam wander displacement variance and beam spreading are presented. Results show that the underwater turbulent channel causes deflection from the on-axis mean irradiance and brings significant wander and spreading effects to the propagating Gaussian beam wave. The variations of beam wander and short- and long-term spreading are obtained depending on the underwater medium parameters such as the average temperature, average salinity concentration, temperature-salinity gradient ratio, and temperature and energy dissipation rates. In particular, the real values of the average temperature and salinity concentration of turbulent water are used to obtain the results. In addition, the effects of propagation distance, Gaussian beam source size, and wavelength are shown. The results demonstrate that the underwater turbulent channel brings displacements in the centroid and spreading of the optical beam. (C) 2022 Optica Publishing GroupArticle Citation - WoS: 5Citation - Scopus: 6Anisotropic Non-Kolmogorov Turbulence Effect on Transmittance of Multi-Gaussian Beam(Taylor & Francis Ltd, 2020) Ata, Yalcin; Baykal, YahyaThe effect of anisotropic non-Kolmogorov turbulent atmosphere on multi-Gaussian beam is investigated and the results are presented against different beam and medium parameters. Results show that anisotropy increases the power efficiency of wireless communication systems. Besides anisotropy, turbulence effects on the multi-Gaussian optical beam are represented versus the beam source size, beam flatness order, propagation distance, inner scale length, turbulence strength, non-Kolmogorov turbulence power law exponent, wavelength, inner and outer source sizes for flat-topped and annular beams.Article Citation - WoS: 8Citation - Scopus: 9Anisotropy Effect on Multi-Gaussian Beam Propagation in Turbulent Ocean(Osa-optical Soc, 2018) Ata, Yalcin; Baykal, YahyaAverage transmittance of multi-Gaussian (flat-topped and annular) optical beams in an anisotropic turbulent ocean is examined analytically based on the extended Huygens-Fresnel principle. Transmittance variations depending on the link length, anisotropy factor, salinity and temperature contribution factor, source size, beam flatness order of flat-topped beam, Kolmogorov microscale length, rate of dissipation of turbulent kinetic energy, rate of dissipation of the mean squared temperature, and thickness of annular beam are examined. Results show that all these parameters have effects in various forms on the average transmittance in an anisotropic turbulent ocean. Hence, the performance of optical wireless communication systems can be improved by taking into account the variation of average transmittance versus the above parameters.Article Citation - WoS: 11Citation - Scopus: 12Anisotropy Effect on Performance of Ppm Optical Wireless Oceanic Communication Links(Pergamon-elsevier Science Ltd, 2019) Baykal, YahyaThe performance, quantified by the bit-error-rate (BER), of M-ary pulse position modulated (PPM) optical wireless oceanic communication (OWOC) link is investigated when such a link operates in anisotropic weak oceanic turbulence. For this purpose, formulations of the average received power and the scintillation index of collimated Gaussian optical beam detected by a point detector are developed for anisotropic weak oceanic turbulence, which in turn are employed in the BER expression of the PPM OWOC links. BER is evaluated under various turbulence parameters of anisotropic oceanic turbulence, M of M-ary PPM, data bit rate, average current gain of avalanche photodiode (APD). For any investigated parameter, it is found that the BER performance of M-ary PPM OWOC links is improved as the ocean becomes more anisotropic. (C) 2019 Elsevier Ltd. All rights reserved.Article Citation - WoS: 1Citation - Scopus: 1Antenna Synthesis by Levin's Method Using a Novel Optimization Algorithm for Knot Placement(Applied Computational Electromagnetics Soc, 2023) Sener, Goker- Antenna synthesis refers to determining the antenna current distribution by evaluating the inverse Fourier integral of its radiation pattern. Since this inte-gral is highly oscillatory, Levin's method can be used for the solution, providing high accuracy. In Levin's method, the integration domain is divided into equally spaced sub-intervals, and the integrals are solved by transfer-ring them into differential equations. This article uses a new optimization algorithm to determine the location of these interval points (knots) to improve the method's accuracy. Two different antenna design examples are pre-sented to validate the accuracy and efficiency of the pro-posed method for antenna synthesis applications.Article Citation - WoS: 69Citation - Scopus: 81Aperture Averaging and Ber for Gaussian Beam in Underwater Oceanic Turbulence(Elsevier Science Bv, 2018) Baykal, Yahya; Gokce, Muhsin CanerIn an underwater wireless optical communication (UWOC) link, power fluctuations over finite-sized collecting lens are investigated for a horizontally propagating Gaussian beam wave. The power scintillation index, also known as the irradiance flux variance, for the received irradiance is evaluated in weak oceanic turbulence by using the Rytov method. This lets us further quantify the associated performance indicators, namely, the aperture averaging factor and the average bit-error rate (). The effects on the UWOC link performance of the oceanic turbulence parameters, i.e., the rate of dissipation of kinetic energy per unit mass of fluid, the rate of dissipation of mean-squared temperature, Kolmogorov microscale, the ratio of temperature to salinity contributions to the refractive index spectrum as well as system parameters, i.e., the receiver aperture diameter, Gaussian source size, laser wavelength and the link distance are investigated. (c) 2017 Elsevier B.V. All rights reserved.Article Citation - WoS: 8Citation - Scopus: 9Aperture Averaging in Multiple-Input Single-Output Free-Space Optical Systems(Spie-soc Photo-optical instrumentation Engineers, 2015) Baykal, Yahya; Kamacioglu, Canan; Uysal, Murat; Gokce, Muhsin C.Multiple-input single-output systems are employed in free-space optical links to mitigate the degrading effects of atmospheric turbulence. We formulate the power scintillation as a function of transmitter and receiver coordinates in the presence of weak atmospheric turbulence by using the extended Huygens Fresnel principle. Then the effect of the receiver aperture averaging is quantified. To get consistent results, parameters are chosen within the range of validity of the wave structure functions. Radial array beams and a Gaussian weighting aperture function are used at the transmitter and the receiver, respectively. It is observed that the power scintillation decreases when the source size, the ring radius, the receiver aperture radius, and the number of array beamlet increase. However, increasing the number of array beamlets to more than three seems to have negligible effect on the power scintillation. It is further observed that the aperture averaging effect is stronger when radial array beams are employed instead of a single Gaussian beam. (C) 2015 Society of Photo-Optical Instrumentation Engineers (SPIE)Article Citation - WoS: 25Citation - Scopus: 25Aperture Averaging in Multiple-Input Single-Output Free-Space Optical Systems Using Partially Coherent Radial Array Beams(Optical Soc Amer, 2016) Baykal, Yahya; Uysal, Murat; Gokce, Muhsin CanerMultiple-input single-output (MISO) techniques are employed in free-space optical (FSO) links to mitigate the degrading effects of atmospheric turbulence. In this paper, for the MISO FSO system, a partially coherent radial array and a finite-sized receiver aperture are used at the transmitter and the receiver, respectively. Using the extended Huygens - Fresnel principle, we formulate the average power and the power correlation at the finite-sized slow detector in weak atmospheric turbulence. System performance indicators such as the power scintillation index and the aperture averaging factor are determined. Effects of the source size, ring radius, receiver aperture radius, link distance, and structure constant and the degree of source coherence are analyzed on the performance of the MISO FSO system. In the limiting cases, the numerical results are found to be the same when compared to the existing coherent and partially coherent Gaussian beam scintillation indices. (C) 2016 Optical Society of AmericaArticle Ardıl Çeviri Eğitiminde Dikkat Yönetimi ve Çalışma Belleği Dinamikleri(2019) Yemenici, AlevArdıl çeviri, çevirmenin yukarıdan-aşağıya dikkatini, aşağıdan-yukarıya dikkatini, dinlenme durumuağlarını ve çalışma belleğini yetkin biçimde yönetmesini gerektiren son derece zorlayıcı bir süreçtir.Çalışma belleğine bilginin girmesi ve işlenmesi ancak yukarıdan-aşağıya dikkatinin odaklanmasısonucu gerçekleşir. Bilginin işlenmesi sürecinde, çevirmenin kulağına gelen bilginin tanınması,çözümlenmesi ve anlamlandırılması üzerine çevirmen konuşmaya ilişkin bir kavrayış elde eder.Çevirmen yukarıdan-aşağıya dikkatini konuşmaya odaklanmak amacıyla korumaya çalışırken belleğiolumsuz yönde etkileyebilecek dinlenme durumu ağlarını ve aşağıdan-yukarıya dikkatini dedenetlemek durumundadır. Ancak bu şekilde çalışma belleğine girecek bilgi işlenerek artalanbilgisiyle bütünleştirileceğinden akıcı ve güvenilir bir çeviri yapılabilir. Bu makalede, sözlü çevirideyetkinlik noktasına ulaşabilmek için bilinmesi gereken bellek dinamikleri ve dikkat türleri üzerindedurulmakta, hem bilginin kodlanması hem de geri çağrılmasında çevirmenin işini kolaylaştıracakstratejilere değinilmekte, ayrıca ardıl çeviri sırasında ortaya çıkabilecek beklenmedik sorunlara bağlıolarak yaşanabilecek dikkat kaybının engellenmesine yönelik öneriler üzerinde durulmaktadır. Bumakalede dikkat ve bellek yönetiminin yanında ardıl çeviri eğitiminde önemli yer tutan ve hem bellekişleyişini hem de dikkat sistemlerini yöneten yürütücü biliş, stres ve sorunlarla başa çıkmastratejilerine de yer verilmiştir.Article Citation - WoS: 6Citation - Scopus: 6Array of Nanoparticles Coupling With Quantum-Dot: Lattice Plasmon Quantum Features(Elsevier Science Bv, 2018) Salmanogli, Ahmad; Gecim, H. SelcukIn this study, we analyze the interaction of lattice plasmon with quantum-dot in order to mainly examine the quantum features of the lattice plasmon containing the photonic/plasmonic properties. Despite optical properties of the localized plasmon, the lattice plasmon severely depends on the array geometry, which may influence its quantum features such as uncertainty and the second-order correlation function. To investigate this interaction, we consider a closed system containing an array of the plasmonic nanoparticles and quantum-dot. We analyze this system with full quantum theory by which the array electric far field is quantized and the strength coupling of the quantum-dot array is analytically calculated. Moreover, the system's dynamics are evaluated and studied via the Heisenberg-Langevin equations to attain the system optical modes. We also analytically examine the Purcell factor, which shows the effect of the lattice plasmon on the quantum-dot spontaneous emission. Finally, the lattice plasmon uncertainty and its time evolution of the second-order correlation function at different spatial points are examined. These parameters are dramatically affected by the retarded field effect of the array nanoparticles. We found a severe quantum fluctuation at points where the lattice plasmon occurs, suggesting that the lattice plasmon photons are correlated.Article Citation - WoS: 24Citation - Scopus: 26Average Channel Capacity in Anisotropic Atmospheric Non-Kolmogorov Turbulent Medium(Elsevier, 2019) Baykal, Yahya; Gokce, Muhsin Caner; Ata, YalcinThe average channel capacity of a free space optical (FSO) communication system running an intensity modulated Gaussian beam is examined in anisotropic non-Kolmogorov atmospheric weak turbulence based on Rytov variance. Results are obtained by employing the log-normal distribution of irradiance fluctuations corresponding to weak turbulence regime. Our results show that average channel capacity increases together with the increase in anisotropy factor in x and y direction, non-Kolmogorov power law exponent, quantum efficiency of photo detector, Gaussian beam source size and the inner scale length. However, the average channel capacity is found to decrease when turbulence strength, link length and noise variance increase.Article Citation - WoS: 29Citation - Scopus: 35Ber Evaluations for Multimode Beams in Underwater Turbulence(Taylor & Francis Ltd, 2016) Arpali, Serap Altay; Baykal, Yahya; Arpali, CaglarIn underwater optical communication links, bit error rate (BER) is an important performance criterion. For this purpose, the effects of oceanic turbulence on multimode laser beam incidences are studied and compared in terms of average BER (< BER >), which is related to the scintillation index. Based on the log-normal distribution, < BER > is analysed for underwater turbulence parameters, including the rate of dissipation of the mean squared temperature, the rate of dissipation of the turbulent kinetic energy, the parameter that determines the relative strength of temperature and salinity in driving index fluctuations, the Kolmogorov microscale length and other link parameters such as link length, wavelength and laser source size. It is shown that use of multimode improves the system performance of optical wireless communication systems operating in an underwater medium. For all the investigated multimode beams, decreasing link length, source size, the relative strength of temperature and salinity in driving the index fluctuations, the rate of dissipation of the mean squared temperature and Kolmogorov microscale length improve the < BER >. Moreover, lower < BER > values are obtained for the increasing wavelength of operation and the rate of dissipation of the turbulent kinetic energy in underwater turbulence.Article Citation - WoS: 1Citation - Scopus: 2Ber Performance Ofm-Ary Pulse Position Modulated Communication Systems in Anisotropic Non-Kolmogorov Turbulent Atmosphere(Taylor & Francis Ltd, 2022) Gokce, Muhsin Caner; Ata, Yalcin; Baykal, YahyaWe investigated the effect of anisotropic non-Kolmogorov atmospheric turbulence on the performance of the optical wireless systems whenM-ary Pulse Position Modulation (PPM) is applied to a Gaussian beam. The performance of the optical wireless systems that use avalanche photodetector at the receiver is evaluated in terms of the bit error rate (BER). The effects of the parameters, such as the anisotropy factors inx-ydirections, modulation order, data bit rate, equivalent load resistor, photodetector quantum efficiency, non-Kolmogorov turbulence power law exponent, beam source size, link length, photodetector gain and structure constant on BER of theM-ary PPM Gaussian beam propagating in anisotropic non-Kolmogorov atmospheric turbulence, are examined.Article Citation - WoS: 30Citation - Scopus: 31Bit Error Rate of Pulse Position Modulated Optical Wireless Communication Links in Oceanic Turbulence(Optical Soc Amer, 2018) Baykal, YahyaThe upper bound of the average bit error rate (BER) of a pulse position modulated (PPM) optical wireless communication (OWC) link operating in oceanic turbulence is formulated. BER variations against the changes in the ratio of temperature to salinity contributions to the refractive index spectrum, the rate of dissipation of mean-squared temperature, and the rate of dissipation of kinetic energy per unit mass of fluid are found at various data bit rates, average current gains of the avalanche photodiode (APD), and M values of the M-ary PPM. It is found that under any oceanic turbulence parameters, BER performance of the PPM OWC system becomes favorable at smaller data bit rates, M values, and at larger average current gains of APD. (c) 2018 Optical Society of AmericaArticle Citation - WoS: 3Citation - Scopus: 6Case Study on Thermal Optimization of Oil Immersed Transformer Used in Solar Power Plant Based on Genetic Algorithm and Computational Fluid Dynamics(Vinca inst Nuclear Sci, 2023) Iskender, Ires; Yukselen, EmirTransformers are one of the most capital investments in the solar power generation. Their safe and stable operations in the electrical networks are important. The main failure factor of transformers is the high temperature generated by the losses during operation, which increases the probability of insulation damage that significantly affects the useful life of transformer. Considering the importance of oil temperature and its effects on the life of the transformer, a numerical method is developed in this paper to optimize the cooling system of the transformer. In this regard, genetic algorithm is used as an optimization method to minimize the total cost of the cooling system while maintaining the required thermal conditions of the transformer. A comprehensive parametric study is carried out among the effective cooling geometry parameters using 3-D electromagnetic and thermal models of the photovoltaic transformer to evaluate and analyze the temperature distribution. The accuracy and feasibility of the proposed method is established by comparing the numerical results with those obtained from the experimental test. The results of the proposed method are found to be in a good agreement with the experimental and simulation results.
