Malzeme Bilimi ve Mühendisliği Bölümü
Permanent URI for this communityhttps://hdl.handle.net/20.500.12416/18
Browse
Browsing Malzeme Bilimi ve Mühendisliği Bölümü by browse.metadata.publisher "Pergamon-elsevier Science Ltd"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Article Citation - WoS: 44Citation - Scopus: 43Corrosion Behaviours of Ti6al4v-mg/Mg-alloy Composites(Pergamon-elsevier Science Ltd, 2020) Butev Ocal, Ezgi; Akkaya, Asli; Gurcay, Bensu; Ozcan, Ceren; Ozgumus, Burcu Asli; Dericioglu, Arcan F.; Esen, ZiyaThe effect of coupling of unalloyed Mg and Mg-alloys (AZ91 and WE43) with Ti6Al4V alloy on corrosion and degradation behaviours of produced composites has been investigated in simulated body fluid (SBF) by hydrogen evolution, and surface and electrochemical characterization techniques. Combining of unalloyed Mg with Ti6Al4V intensified galvanic corrosion and catastrophic failure occurred by initiation of microcracks formed by sudden hydrogen gas evolution. In contrast to other composites, Ti6Al4V-AZ91 composites, containing new TiAl3 interface layer formed during composite production, preserved their mechanical integrities due to lowest corrosion and degradation rate of AZ91 alloy.Article Citation - WoS: 50Citation - Scopus: 51Local Chemical and Topological Order in Al-Tb and Its Role in Controlling Nanocrystal Formation(Pergamon-elsevier Science Ltd, 2012) Kalay, Y. E.; Kalay, I.; Hwang, Jinwoo; Voyles, P. M.; Kramer, M. J.How the chemical and topological short- to medium-range order develops in Al-Tb glass and its ultimate effect on the control of the high number density of face-centered-cubic-Al (fcc-Al) nuclei during devitrification are described. A combined study using high-energy X-ray diffraction (HEXRD), atom probe tomography (APT), transmission electron microscopy and fluctuation electron microscopy (FEM) was conducted in order to resolve the local structure in amorphous Al90Tb10. Reverse Monte Carlo simulations and Voronoi tessellation analysis based on HEXRD experiments revealed a high coordination of Al around Tb atoms in both liquid and amorphous states. APT results show Al-rich and Al-depleted regions within the as-quenched alloy. A network structure of Tb-rich clusters divides the matrix into nanoscale regions where Al-rich clusters are isolated. It is this finely divided network which allows the amorphous structure to form. Al-rich regions are the locus for fcc-Al crystallization, which occurs before the intermetallic crystallization. FEM reveals medium-range ordered regions similar to 2 nm in diameter, consistent with fcc-Al and trigonal-like Al3Tb crystal structures. We propose that the high coordination of Al around Tb limits diffusion in the intermetallic network, allowing for the isolated Al-rich regions to form at high density. These regions are responsible for the extremely high density of Al nanocrystal nuclei. (C) 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
