Elektrik Elektronik Mühendisliği Bölümü
Permanent URI for this communityhttps://hdl.handle.net/20.500.12416/410
Browse
Browsing Elektrik Elektronik Mühendisliği Bölümü by browse.metadata.publisher "Optica Publishing Group"
Now showing 1 - 9 of 9
- Results Per Page
- Sort Options
Article Citation - WoS: 4Citation - Scopus: 5Analysis of Wander and Spreading of an Optical Beam by Using the Oceanic Turbulence Optical Power Spectrum(Optica Publishing Group, 2022) Baykal, Yahya; Gokce, Muhsin Caner; Ata, YalcInVariance of beam displacement and short-term and long-term spreading of a Gaussian beam propagating in the presence of underwater turbulence are examined by using the oceanic turbulence optical power spectrum (OTOPS). Analytical expressions for both beam wander displacement variance and beam spreading are presented. Results show that the underwater turbulent channel causes deflection from the on-axis mean irradiance and brings significant wander and spreading effects to the propagating Gaussian beam wave. The variations of beam wander and short- and long-term spreading are obtained depending on the underwater medium parameters such as the average temperature, average salinity concentration, temperature-salinity gradient ratio, and temperature and energy dissipation rates. In particular, the real values of the average temperature and salinity concentration of turbulent water are used to obtain the results. In addition, the effects of propagation distance, Gaussian beam source size, and wavelength are shown. The results demonstrate that the underwater turbulent channel brings displacements in the centroid and spreading of the optical beam. (C) 2022 Optica Publishing GroupArticle Citation - WoS: 5Citation - Scopus: 5Correlation of Multimode Fields in Atmospheric Turbulence(Optica Publishing Group, 2023) Gokce, Muhsin Caner; Ata, Yalcin; Gercekcioglu, Hamza; Baykal, YahyaMultimode field correlations are evaluated in atmospheric turbulence. High order field correlations are special cases of the results that we obtained in this paper. Field correlations are presented for various numbers of mul- timodes, various multimode contents of the same number of modes, and various high order modes versus the diagonal distance from various receiver points, source size, link length, structure constant, and the wavelength. Our results will be of help especially in the design of heterodyne systems operating in turbulent atmosphere and fiber coupling efficiency in systems employing multimode excitation.(c) 2023 Optica Publishing GroupArticle Citation - WoS: 3Citation - Scopus: 2Correlations of Multimode Optical Incidences in a Turbulent Biological Tissue(Optica Publishing Group, 2023) Gokce, Muhsin Caner; Gerekcioglu, Hamza; Ata, Yalin; Baykal, YahyaIn a turbulent biological tissue, field correlations at the observation plane are found when a multimode optical incidence is used. For different multimode structures, variations of the multimode field correlations are evaluated against the biological tissue turbulence parameters, i.e., the strength coefficient of the refractive-index fluctuations, fractal dimension, characteristic length of heterogeneity, and the small length-scale factor. Using a chosen multimode content, for specific biological tissue types of liver parenchyma (mouse), intestinal epithelium (mouse), upper dermis (human), and deep dermis (mouse), field correlations are evaluated versus the strength coefficient of the refractive-index fluctuations and small length-scale factor. Again, with a chosen multimode content, behavior of the field correlations is studied against the strength coefficient of the refractive-index fluctuations for various diagonal lengths and the transverse coordinate at the observation plane. Finally, the field correlation versus the strength coefficient of the refractive-index fluctuations is reported for different single modes, which are special cases of multimode excitation. This topic is being reported in the literature for the first time, to our knowledge, and the presented results can be employed in many important biological tissue applications. (c) 2023 Optica PublishingArticle Citation - WoS: 3Citation - Scopus: 3Fiber Coupling Efficiency in Ocean With Adaptive Optics Corrections(Optica Publishing Group, 2023) Gokce, Muhsin Caner; Ata, Yalcin; Baykal, YahyaUnderwater optical wireless communication (UOWC) is a very promising technology that enables high-speed data transfer through the use of laser beams in an oceanic turbulent medium. The high-tech fiber optical devices, which are already available in the market, can be integrated with the UOWC systems. When integration is achieved, oceanic turbulence, which distorts the wavefront of the propagating laser beam, plays an important role in reducing the fiber coupling efficiency (FCE), which in turn results in reducing the light power received from the fiber optical components. In this paper, we propose the use of the adaptive optics technique in a UOWC system to mitigate the effects of oceanic turbulence and boost the FCE. For this reason, the field correlation for a Gaussian laser beam is derived by using the Huygens-Fresnel principle. This way, the light power over the coupling lens and the light power accepted by the fiber core are formulated under the effect of adaptive optics corrections, which are repre-sented by the number of Zernike modes. The results demonstrate that under the oceanic turbulence effect, the FCE of the UOWC system employing adaptive optics is always larger than that of the UOWC system employing no adaptive optics. (c) 2023 Optica Publishing GroupArticle Citation - WoS: 3Citation - Scopus: 2Field Correlations of a Partially Coherent Optical Gaussian Wave in Tissue Turbulence(Optica Publishing Group, 2022) Baykal, YahyaFor a partially coherent Gaussian optical wave, field correlations in turbulent tissues are examined. Changes in the field correlations are evaluated when the degree of source coherence, diagonal length from the receiver point, transverse receiver coordinate, tissue type, tissue length, source size, characteristic length of heterogeneity, strength coefficient of the refractive-index fluctuations, fractal dimension, and the small length-scale factor of the turbulent tissue vary. Investigated turbulent tissue types are liver parenchyma (mouse), upper dermis (human), intestinal epithelium (mouse), and deep dermis (mouse). For all the examined tissue types, field correlations are found to increase as the degree of source coherence, fractal dimension, and small length-scale factor increase and as the diagonal length from the receiver point, transverse receiver coordinate, tissue length, characteristic length of heterogeneity, and strength coefficient of the refractive-index fluctuations decrease. For the coherent source, an increase in the source size will increase the field correlations; however, for the partially coherent source, this trend is reversed. (c) 2022 Optica Publishing GroupArticle Citation - WoS: 6Citation - Scopus: 6Field Correlations of Partially Coherent Optical Beams in Underwater Turbulence(Optica Publishing Group, 2022) Baykal, Yahya; Gercekcioglu, HamzaField correlations of partially coherent optical beams at the receiver plane are formulated and evaluated in underwater turbulence. Variations of the field correlations are examined against changes in the degree of source coherence, diagonal length from the receiver point, receiver point, propagation distance, source size, ratio of temperature to salinity contributions to the refractive index spectrum, rate of dissipation of mean-squared temperature, and rate of dissipation of kinetic energy per unit mass of fluid. Under any underwater turbulence and link conditions, it is found that field correlations at the receiver plane reduce when the optical source becomes less coherent. (c) 2022 Optica Publishing GroupArticle Citation - WoS: 3Citation - Scopus: 3Laser Beam Scintillations of Lidar Operating in Weak Oceanic Turbulence(Optica Publishing Group, 2022) Baykal, Yahya; Gercekcioglu, HamzaThe formulation of light detection and ranging (LIDAR) systems is derived and examined for the scintillation index, evaluated on-axis, of laser beams in horizontal links in the ocean with weak turbulence by utilizing the Rytov method. These scintillation indices, obtained for the Gaussian beam which is collimated, the limits of plane and spherical waves, are depicted versus the source size, target size, and parameter of the normalized reflector size. It is found that the source size, target size, and normalized reflector size parameter, lessening the scintilla-tion index evaluated on-axis, are approximately 0.44 cm, 56 x 10-4 cm, and 2.2, respectively. Additionally, by using these values that minimize the scintillation index, the variation of the scintillations is shown against the propagation distance, radius of reflector, temperature and salinity fluctuation effects, mean squared temperature, and turbulent kinetic energy dissipation rate per unit mass of fluid at various selected source size and radius of reflector values. (c) 2022 Optica Publishing GroupArticle Citation - WoS: 3Citation - Scopus: 2Modulation Transfer Function Variation Through Anisotropic Turbulence in Biological Tissue(Optica Publishing Group, 2023) Gokce, Muhsin Caner; Baykal, Yahya; Ata, YalcinAnalysis of the long-exposure modulation transfer function (MTF) is performed for optical imaging using plane and spherical waves through anisotropic turbulence in biological tissues. To obtain the MTF, the wave structure functions of plane and spherical waves are obtained in closed-form expressions. Results are presented depending on various parameters of the turbulent medium and optical beam. The positive effect of anisotropy on optical imaging is remarkable in turbulent biological tissues. Besides scattering and absorption, taking anisotropy into account as well as turbulence will lead to a more accurate description of the performance of the medical imaging systems that use optical spectrums in biological tissues. (c) 2023 Optica Publishing GroupArticle Citation - WoS: 1Citation - Scopus: 2Performance of a Free-Space Optical Communication System Employing Receive Diversity Techniques in Anisotropic Atmospheric Non-Kolmogorov Turbulence(Optica Publishing Group, 2022) Gokce, Muhsin Caner; Ata, Yalcin; Baykal, YahyaIn this paper, bit error rate (BER) performance of a free-space optical communication (FSOC) system operating in anisotropic non-Kolmogorov weak turbulence is investigated together with the spatial diversity techniques. The spatial diversity techniques are implemented as maximum ratio combining (MRC), equal gain combining (EGC), and selection combining (SC) and applied to the receiver. The propagating beam is the Gaussian beam wave, and the modulation scheme is binary phase-shift keying (BPSK). Results are obtained for various parameters such as the anisotropy factor, non-Kolmogorov power law exponent, photodetector responsivity, equivalent load resistor, electronic bandwidth, Gaussian beam radius, wavelength, propagation distance, and turbulence structure constant. It is found that the spatial diversity technique used at the receiver causes significant improvement in the performance of an FSOC system under the conditions of anisotropic non-Kolmogorov atmospheric turbulence. It is also observed that BER performance improves as the atmospheric turbulence becomes more anisotropic. Among the spatial diversity techniques, SC is inferior to EGC and EGC is inferior toMRC in terms of BER performance. (C) 2022 Optica Publishing Group
