Ortak Dersler Bölümü
Permanent URI for this communityhttps://hdl.handle.net/20.500.12416/1817
Browse
Browsing Ortak Dersler Bölümü by browse.metadata.publisher "Elsevier Gmbh, Urban & Fischer verlag"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Article Citation - WoS: 7Citation - Scopus: 8Damping Constant and the Relaxation Time Calculated for the Lowest-Frequency Soft Mode in the Ferroelectric Phase of Cd2nb2o7(Elsevier Gmbh, Urban & Fischer verlag, 2016) Yurtseven, H.; Kiraci, A.The temperature dependence of the phonon frequency omega(ph) and of the damping constant Gamma(sp) due to pseudospin-phonon coupling of the lowest-frequency soft mode is calculated in the ferroelectric phase near the transition temperature (T-C =196 K) in Cd2Nb2O7. Raman frequency of the soft mode is used as an order parameter which is calculated from the molecular field theory. On that basis, the damping constant is calculated by fitting the expressions from the pseudospin-phonon coupled model and the energy fluctuation model to the observed linewidth from the literature below T-C in Cd2Nb2O7. From our analysis, we find that the molecular field theory is adequate for the soft mode behaviour and that both models are also satisfactory for the divergence behaviour of the damping constant as T-C is approached from the ferroelectric phase in Cd2Nb2O7. Values of the activation energy U are extracted from the temperature dependence of the damping constant (HWHM) of the soft mode in the ferroelectric phase of this crystal. Also, the inverse relaxation time is predicted using the Raman frequency and damping constant close to the T-C in the ferroelectric phase of Cd2Nb2O7, which increases considerably as T-C is approached from the ferroelectric phase, as observed experimentally. (C) 2016 Elsevier GmbH. All rights reserved.Article Citation - WoS: 5Citation - Scopus: 5Temperature Dependence of the Polarization, Dielectric Constant, Damping Constant and the Relaxation Time Close To the Ferroelectric-Paraelectric Phase Transition in Linbo3(Elsevier Gmbh, Urban & Fischer verlag, 2017) Yurtseven, H.; Kiraci, A.We calculate the order parameter (spontaneous polarization) and the inverse dielectric susceptibility at various temperatures in the ferroelectric phase of LiNbO3 for its ferroelectric-paraelectric phase transition (T-C =1260 K) using the Landau phenomenological model. For this calculation, the Raman frequencies of the soft optic mode (TO1) are used as the order parameter and the fitting procedure is employed for both the order parameter and the inverse dielectric susceptibility by means of the observed data from the literature. The temperature dependences of the damping constant and the inverse relaxation time are also computed using the pseudospin-phonon coupled model and the energy fluctuation model for the ferroelectric phase of LiNbO3. The activation energy is deduced from the damping constant for both models studied and compared with the k(B)T(C) value of LiNbO3. We find that the order parameter (Raman frequency of the TO1 mode) and the inverse dielectric susceptibility decrease with increasing temperature, as expected from the mean field model. We also find that the damping constant and the inverse relaxation time of this soft mode increases and decreases, respectively, with increasing temperature on the basis of the two models studied in the ferroelectric phase of LiNbO3. This indicates that our method of calculation is satisfactory to describe the observed behaviour of the ferroelectric-paraelectric phase transition in LiNbO3. (C) 2016 Elsevier GmbH. All rights reserved.
