Fen - Edebiyat Fakültesi
Permanent URI for this communityhttps://hdl.handle.net/20.500.12416/1
Browse
Browsing Fen - Edebiyat Fakültesi by Scopus Q "Q1"
Now showing 1 - 20 of 1066
- Results Per Page
- Sort Options
Article Citation - WoS: 79Citation - Scopus: 83The (2+1)-Dimensional Heisenberg Ferromagnetic Spin Chain Equation: Its Solitons and Jacobi Elliptic Function Solutions(Springer Heidelberg, 2021) Salahshour, Soheil; Mirzazadeh, Mohammad; Ahmadian, Ali; Baleanu, Dumitru; Khoshrang, Arian; Hosseini, KamyarThe search for exact solutions of nonlinear evolution models with different wave structures has achieved significant attention in recent decades. The present paper studies a nonlinear (2+1)-dimensional evolution model describing the propagation of nonlinear waves in Heisenberg ferromagnetic spin chain system. The intended aim is carried out by considering a specific transformation and adopting a modified version of the Jacobi elliptic expansion method. As a result, a number of solitons and Jacobi elliptic function solutions to the Heisenberg ferromagnetic spin chain equation are formally derived. Several three-dimensional plots are presented to demonstrate the dynamical features of the bright and dark soliton solutions.Article Citation - WoS: 19Citation - Scopus: 23The (2+1)-Dimensional Hyperbolic Nonlinear Schrodinger Equation and Its Optical Solitons(Amer inst Mathematical Sciences-aims, 2021) Hosseini, Kamyar; Salahshour, Soheil; Sadri, Khadijeh; Mirzazadeh, Mohammad; Park, Choonkil; Ahmadian, Ali; Baleanu, UmitruA comprehensive study on the (2+1)-dimensional hyperbolic nonlinear Schrodinger (2D-HNLS) equation describing the propagation of electromagnetic fields in self-focusing and normally dispersive planar wave guides in optics is conducted in the current paper. To this end, after reducing the 2D-HNLS equation to a one-dimensional nonlinear ordinary differential (1D-NLOD) equation in the real regime using a traveling wave transformation, its optical solitons are formally obtained through a group of well-established methods such as the exponential and Kudryashov methods. Some graphical representations regarding optical solitons that are categorized as bright and dark solitons are considered to clarify the dynamics of the obtained solutions. It is noted that some of optical solitons retrieved in the current study are new and have been not retrieved previously.Article A note on (p, q)-analogue type of Fubini numbers and polynomials(2020) Khan, Waseem Ahmad; Nisar, Kottakkaran Sooppy; Baleanu, DumitruIn this paper, we introduce a new class of (p, q)-analogue type of Fubini numbers and polynomials and investigate some properties of these polynomials. We establish summation formulas of these polynomials by summation techniques series. Furthermore, we consider some relationships for (p, q)-Fubini polynomials associated with (p, q)-Bernoulli polynomials, (p, q)-Euler polynomials and (p, q)-Genocchi polynomials and (p, q)-Stirling numbers of the second kind.p>
Article A Note On (P, Q)-Analogue Type of Fubini Numbers and Polynomials(American Institute of Mathematical Sciences, 2020) Khan, Waseem Ahmad; Nisar, Kottakkaran Sooppy; Baleanu, DumitruIn this paper, we introduce a new class of (p, q)-analogue type of Fubini numbers and polynomials and investigate some properties of these polynomials. We establish summation formulas of these polynomials by summation techniques series. Furthermore, we consider some relationships for (p, q)-Fubini polynomials associated with (p, q)-Bernoulli polynomials, (p, q)-Euler polynomials and (p, q)-Genocchi polynomials and (p, q)-Stirling numbers of the second kind.Article Citation - WoS: 64Citation - Scopus: 70About Fractional Quantization and Fractional Variational Principles(Elsevier, 2009) Baleanu, Dumitruin this paper, a new method of finding the fractional Euler-Lagrange equations within Caputo derivative is proposed by making use of the fractional generalization of the classical Fad di Bruno formula. The fractional Euler-Lagrange and the fractional Hamilton equations are obtained within the 1 + 1 field formalism. One illustrative example is analyzed. (C) 2008 Elsevier B.V. All rights reserved.Article About fractional quantization and fractional variational principles(2009) Baleanu, Dumitruin this paper, a new method of finding the fractional Euler-Lagrange equations within Caputo derivative is proposed by making use of the fractional generalization of the classical Fad di Bruno formula. The fractional Euler-Lagrange and the fractional Hamilton equations are obtained within the 1 + 1 field formalism. One illustrative example is analyzed. (C) 2008 Elsevier B.V. All rights reserved.Article Citation - WoS: 3Citation - Scopus: 6About the Existence Results of Fractional Neutral Integrodifferential Inclusions With State-Dependent Delay in Frechet Spaces(Hindawi Ltd, 2016) Baleanu, Dumitru; Selvarasu, Siva; Arjunan, Mani Mallika; Suganya, SelvarajA recent nonlinear alternative for multivalued contractions in Frechet spaces thanks to Frigon fixed point theorem consolidated with semigroup theory is utilized to examine the existence results for fractional neutral integrodifferential inclusions (FNIDI) with state-dependent delay (SDD). An example is described to represent the hypothesis.Article Citation - WoS: 30Citation - Scopus: 33Abundant New Solutions of the Transmission of Nerve Impulses of an Excitable System(Springer Heidelberg, 2020) Attia, Raghda A. M.; Baleanu, Dumitru; Khater, Mostafa M. A.This research investigates the dynamical behavior of the transmission of nerve impulses of a nervous system (the neuron) by studying the computational solutions of the FitzHugh-Nagumo equation that is used as a model of the transmission of nerve impulses. For achieving our goal, we employ two recent computational schemes (the extended simplest equation method and Sinh-Cosh expansion method) to evaluate some novel computational solutions of these models. Moreover, we study the stability property of the obtained solutions to show the applicability of them in life. For more explanation of this transmission, some sketches are given for the analytical obtained solutions. A comparison between our results and that obtained in previous work is also represented and discussed in detail to show the novelty for our solutions. The performance of the two used methods shows power, practical and their ability to apply to other nonlinear partial differential equations.Article Citation - WoS: 36Citation - Scopus: 40Abundant Periodic Wave Solutions for Fifth-Order Sawada-Kotera Equations(Elsevier, 2020) Awan, Aziz Ullah; Osman, Mohamed S.; Baleanu, Dumitru; Alqurashi, Maysaa M.; Tahir, MuhammadIn this manuscript, two nonlinear fifth-order partial differential equations, namely, the bidirectional and 2D-Sawada-Kotera equations are analytically treated using an extended form of homoclinic process. In the presence of a bilinear form, novel periodic waves with different categories including periodic soliton, solitary and kinky solitary wave solutions are constructed. In the meantime, The diverse features and mechanical qualities of these acquired solutions are elucidated by 3D figures and some contour plots.Article Citation - WoS: 14Citation - Scopus: 17An Accurate Approximate-Analytical Technique for Solving Time-Fractional Partial Differential Equations(Wiley-hindawi, 2017) Salahshour, S.; Ahmadian, A.; Ismail, F.; Baleanu, D.; Bishehniasar, M.The demand of many scientific areas for the usage of fractional partial differential equations (FPDEs) to explain their real-world systems has been broadly identified. The solutions may portray dynamical behaviors of various particles such as chemicals and cells. The desire of obtaining approximate solutions to treat these equations aims to overcome the mathematical complexity of modeling the relevant phenomena in nature. This research proposes a promising approximate-analytical scheme that is an accurate technique for solving a variety of noninteger partial differential equations (PDEs). The proposed strategy is based on approximating the derivative of fractional-order and reducing the problem to the corresponding partial differential equation (PDE). Afterwards, the approximating PDE is solved by using a separation-variables technique. The method can be simply applied to nonhomogeneous problems and is proficient to diminish the span of computational cost as well as achieving an approximate-analytical solution that is in excellent concurrence with the exact solution of the original problem. In addition and to demonstrate the efficiency of the method, it compares with two finite difference methods including a nonstandard finite difference (NSFD) method and standard finite difference (SFD) technique, which are popular in the literature for solving engineering problems.Article Accurate novel explicit complex wave solutions of the (2+1)-dimensional Chiral nonlinear Schrodinger equation(2021) Alshahrani, B.; Yakout, H. A.; Khater, Mostafa M. A.; Abdel-Aty, Abdel-Haleem; Mahmoud, Emad E.; Baleanu, Dumitru; Eleuch, HichemThis manuscript investigates the accuracy of the solitary wave solutions of the (2+1)-dimensional nonlinear Chiral Schrodinger ((2+1)-D CNLS) equation that are constructed by employing two recent analytical techniques (modified Khater (MKhat) and modified Jacobian expansion (MJE) methods). This investigation is based on evaluating the initial and boundary conditions through the obtained analytical solutions then employing the Adomian decomposition (AD) method to evaluate the approximate solutions of the (2+1)-D CNLS equation. This framework gives the ability to get large complex traveling wave solutions of the considered model and shows the superiority of the employed computational schemes by comparing the absolute error for each of them. The handled model describes the edge states of the fractional quantum hall effect. Many novel solutions are obtained with various formulas such as trigonometric, rational, and hyperbolic to the studied model. For more illustration of the results, some solutions are displayed in 2D, 3D, and density plots.Article Citation - WoS: 9Citation - Scopus: 11An Accurate Predictor-Corrector Nonstandard Finite Difference Scheme for an Seir Epidemic Model(Hindawi Ltd, 2020) Ahmad, Riaz; Farooqi, Rashada; Alharbi, Sayer O.; Baleanu, Dumitru; Rafiq, Muhammad; Ahmad, M. O.; Farooqi, AsmaThe present work deals with the construction, development, and analysis of a viable normalized predictor-corrector-type nonstandard finite difference scheme for the SEIR model concerning the transmission dynamics of measles. The proposed numerical scheme double refines the solution and gives realistic results even for large step sizes, thus making it economical when integrating over long time periods. Moreover, it is dynamically consistent with a continuous system and unconditionally convergent and preserves the positive behavior of the state variables involved in the system. Simulations are performed to guarantee the results, and its effectiveness is compared with well-known numerical methods such as Runge-Kutta (RK) and Euler method of a predictor-corrector type.Article Citation - WoS: 17Citation - Scopus: 19Achieving More Precise Bounds Based on Double and Triple Integral as Proposed by Generalized Proportional Fractional Operators in the Hilfer Sense(World Scientific Publ Co Pte Ltd, 2021) Rashid, Saima; Karaca, Yeliz; Hammouch, Zakia; Baleanu, Dumitru; Chu, Yu-Ming; Al-Qurashi, MaysaaA user-friendly approach depending on nonlocal kernel has been constituted in this study to model nonlocal behaviors of fractional differential and difference equations, which is known as a generalized proportional fractional operator in the Hilfer sense. It is deemed, for differentiable functions, by a fractional integral operator applied to the derivative of a function having an exponential function in the kernel. This operator generalizes a novel version of Cebysev-type inequality in two and three variables sense and furthers the result of existing literature as a particular case of the Cebysev inequality is discussed. Some novel special cases are also apprehended and compared with existing results. The outcome obtained by this study is very broad in nature and fits in terms of yielding an enormous number of relating results simply by practicing the proportionality indices included therein. Furthermore, the outcome of our study demonstrates that the proposed plans are of significant importance and computationally appealing to deal with comparable sorts of differential equations. Taken together, the results can serve as efficient and robust means for the purpose of investigating specific classes of integrodifferential equations.Article Citation - WoS: 11Citation - Scopus: 11Additive Trinomial Frechet Distribution With Practical Application(Elsevier, 2022) Sindhu, Tabassum Naz; Jarad, Fahd; Lone, Showkat AhmadThis article presents an innovative model called Additive Trinomial Fre chet (ATF) distribution using six parameters. The indicated model is worthy of modeling survival data with a non-monotonic hazard rate. The statistical characteristics of ATF model such as probability generating function, Renyi, Shannon, Tsallis and Mathai-Houbold entropy, quantile function, order statistics, maximum likelihood estimation, factorial and characteristic function, moment generating function, Stress-Strength analysis are thoroughly discussed. The effectiveness of suggested model is demonstrated by the use of a data set from real life. The suggested model has demonstrated better performance and fits the data used superior than other significant counterparts.Article Citation - WoS: 24Citation - Scopus: 32Advanced Exact Solutions To the Nano-Ionic Currents Equation Through Mts and the Soliton Equation Containing the Rlc Transmission Line(Springer Heidelberg, 2023) Miah, M. Mamun; Iqbal, M. Ashik; Alshehri, Hashim M.; Baleanu, Dumitru; Osman, M. S.; Chowdhury, M. AkherIn this study, the double (G '/G, 1/G)-expansion method is utilized for illustrating the improved explicit integral solutions for the two of nonlinear evolution equations. To expose the importance and convenience of our assumed method, we herein presume two models, namely the nano-ionic currents equation and the soliton equation. The exact solutions are generated with the aid of our proposed method in such a manner that the solutions involve to the rational, trigonometric, and hyperbolic functions for the first presumed nonlinear equation as well as the trigonometric and hyperbolic functions for the second one with meaningful symbols that promote some unique periodic and solitary solutions. The method used here is an extension of the (G '/G)-expansion method to rediscover all known solutions. We offer 2D and 3D charts of the various recovery solutions to better highlight our findings. Finally, we compared our results with those of earlier solutions.Article Citation - WoS: 34Citation - Scopus: 36Age-Based Analysis of Heart Rate Variability (Hrv) for Patients With Congestive Heart Failure(World Scientific Publ Co Pte Ltd, 2021) Baleanu, Dumitru; Krejcar, Ondrej; Namazi, HamidrezaIt is known that heart activity changes during aging. In this paper, we evaluated alterations of heart activity from the complexity point of view. We analyzed the variations of heart rate of patients with congestive heart failure that are categorized into four different age groups, namely 30-39, 50-59, 60-69, and 70-79 years old. For this purpose, we employed three complexity measures that include fractal dimension, sample entropy, and approximate entropy. The results showed that the trend of increment of subjects' age is reflected in the trend of increment of the complexity of heart rate variability (HRV) since the values of fractal dimension, approximate entropy, and sample entropy increase as subjects get older. The analysis of the complexity of other physiological signals can be further considered to investigate the variations of activity of other organs due to aging.Article Citation - WoS: 15Citation - Scopus: 14An Algorithm for Hopf Bifurcation Analysis of a Delayed Reaction-Diffusion Model(Springer, 2017) Kayan, S.; Merdan, H.We present an algorithm for determining the existence of a Hopf bifurcation of a system of delayed reaction-diffusion equations with the Neumann boundary conditions. The conditions on parameters of the system that a Hopf bifurcation occurs as the delay parameter passes through a critical value are determined. These conditions depend on the coefficients of the characteristic equation corresponding to linearization of the system. Furthermore, an algorithm to obtain the formulas for determining the direction of the Hopf bifurcation, the stability, and period of the periodic solution is given by using the Poincare normal form and the center manifold theorem. Finally, we give several examples and some numerical simulations to show the effectiveness of the algorithm proposed.Article Citation - WoS: 31Citation - Scopus: 33All Linear Fractional Derivatives With Power Functions' Convolution Kernel and Interpolation Properties(Pergamon-elsevier Science Ltd, 2023) Baleanu, Dumitru; Shiri, BabakOur attempt is an axiomatic approach to find all classes of possible definitions for fractional derivatives with three axioms. In this paper, we consider a special case of linear integro-differential operators with power functions' convolution kernel a(a)(t-s)b(a) of order a a (0,1). We determine analytic functions a(a) and b(a) such that when a-* 0+, the corresponding operator becomes identity operator, and when a-* 1- the corresponding operator becomes derivative operator. Then, a sequential operator is used to extend the fractional operator to a higher order. Some properties of the sequential operator in this regard also are studied. The singularity properties, Laplace transform and inverse of the new class of fractional derivatives are investigated. Several examples are provided to confirm theoretical achievements. Finally, the solution of the relaxation equation with diverse fractional derivatives is obtained and compared.Article Citation - WoS: 2Citation - Scopus: 4Almost Local Stability in Discrete Delayed Chaotic Systems(Springer, 2017) Baleanu, Dumitru; Taghizadeh, Elham; Gilani, Zahra Goli; Nategh, MehdiThis work studies dynamic of delayed discrete chaotic systems with bounded and unbounded delays. The time lags appear in additive which is coupled with a smooth function and nonadditive forms. It has been shown that, in both additive and nonadditive cases, the primal (non-delayed) system is neutral to the bounded delay to possess an attractive fixed point. Nevertheless, if a nonadditive and unbounded delay is supposed to affect a chaotic and measure preserving system locally, then the delay function might be sensitive to initial states. A local stabilization to the dynamics of Logistic and Gaussian maps are made and creation of attractive fixed points is illustrated.Article An e ffective method for solving nonlinear integral equations involving the Riemann-Liouville fractional operator(2023) Paul, Supriya Kumar; Mishra, Lakshmi Narayan; Mishra, Vishnu Narayan; Baleanu, DumitruIn this paper, under some conditions in the Banach space C([0; beta];R), we establish the existence and uniqueness of the solution for the nonlinear integral equations involving the Riemann-Liouville fractional operator (RLFO). To establish the requirements for the existence and uniqueness of solutions, we apply the Leray-Schauder alternative and Banach's fixed point theorem. We analyze Hyers-Ulam-Rassias (H-U-R) and Hyers-Ulam (H-U) stability for the considered integral equations involving the RLFO in the space C([0; beta];R). Also, we propose an e ffective and e fficient computational method based on Laguerre polynomials to get the approximate numerical solutions of integral equations involving the RLFO. Five examples are given to interpret the method.
