Elektronik ve Haberleşme Mühendisliği Bölümü
Permanent URI for this communityhttps://hdl.handle.net/20.500.12416/14
Browse
Browsing Elektronik ve Haberleşme Mühendisliği Bölümü by WoS Q "Q2"
Now showing 1 - 20 of 188
- Results Per Page
- Sort Options
Article Citation - WoS: 110Citation - Scopus: 112Active Laser Radar Systems With Stochastic Electromagnetic Beams in Turbulent Atmosphere(Optica Publishing Group, 2008) Cai, Yangjian; Korotkova, Olga; Eyyuboglu, Halil T.; Baykal, YahyaPropagation of stochastic electromagnetic beams through paraxial ABCD optical systems operating through turbulent atmosphere is investigated with the help of the ABCD matrices and the generalized Huygens-Fresnel integral. In particular, the analytic formula is derived for the cross-spectral density matrix of an electromagnetic Gaussian Schell-model (EGSM) beam. We applied our analysis for the ABCD system with a single lens located on the propagation path, representing, in a particular case, the unfolded double-pass propagation scenario of active laser radar. Through a number of numerical examples we investigated the effect of local turbulence strength and lens' parameters on spectral, coherence and polarization properties of the EGSM beam. (C) 2008 Optical Society of AmericaArticle Citation - WoS: 2Citation - Scopus: 1Airy-Type Relativistic Matter Wave(Elsevier Gmbh, 2021) Umul, Yusuf ZiyaA new relativistic Airy-type matter wave is introduced as a solution of the kinetic energy based wave equation. The parametric solution of the related differential equation is obtained. The total energy and momentum of the relativistic particle are derived by using a Bohmian type of decomposition of the kinetic energy based equation. The acceleration of the particle is also evaluated. The behavior of the matter wave is investigated numerically.Article Citation - WoS: 183Citation - Scopus: 193Analysis of Reciprocity of Cos-Gaussian and Cosh-Gaussian Laser Beams in a Turbulent Atmosphere(Optical Soc Amer, 2004) Eyyuboglu, HT; Baykal, YIn a turbulent atmosphere, starting with a cos-Gaussian excitation at the source plane, the average intensity profile at the receiver plane is formulated. This average intensity profile is evaluated against the variations of link lengths, turbulence levels, two frequently used free-space optics wavelengths, and beam displacement parameters. We show that a cos-Gaussian beam, following a natural diffraction, is eventually transformed into a cosh-Gaussian beam. Combining our earlier results with the current findings, we conclude that cos-Gaussian and cosh-Gaussian beams act in a reciprocal manner after propagation in turbulence. The rates (paces) of conversion in the two directions are not the same. Although the conversion of cos-Gaussian beams to cosh-Gaussian beams can happen over a wide range of turbulence levels (low to moderate to high), the conversion of cosh-Gaussian beams to cos-Gaussian beams is pronounced under relatively stronger turbulence conditions. Source and propagation parameters that affect this reciprocity have been analyzed. (C) 2004 Optical Society of America.Article Citation - WoS: 4Citation - Scopus: 4An Analytical Solution for the Plane Wave Diffraction by a Resistive Half-Plane Residing at the Interface of Left and Right Handed Media(Elsevier Gmbh, 2019) Basdemir, Husnu DenizThe diffraction of waves by a resistive half-plane lying on the interface of left and right handed media is investigated in this study. Because of the anomalous refraction property of left handed media, shadow boundary shifts toward to the lower surface of the half-plane. In order to obtain the shifted boundary, diffracted waves are divided to subfields. Thus, obtained diffracted waves compensates the deficiency of geometries optics fields at the transition regions. The uniform version of waves is obtained by using the uniform theory of diffraction. The wave behaviors are examined numerically.Article Citation - WoS: 20Citation - Scopus: 21Apertured Averaged Scintillation of Fully and Partially Coherent Gaussian, Annular Gaussian, Flat Toped and Dark Hollow Beams(Elsevier Science Bv, 2015) Eyyuboglu, Halil T.Apertured averaged scintillation requires the evaluation of rather complicated irradiance covariance function. Here we develop a much simpler numerical method based on our earlier introduced semianalytic approach. Using this method, we calculate aperture averaged scintillation of fully and partially coherent Gaussian, annular Gaussian flat topped and dark hollow beams. For comparison, the principles of equal source beam power and normalizing the aperture averaged scintillation with respect to received power are applied. Our results indicate that for fully coherent beams, upon adjusting the aperture sizes to capture 10 and 20% of the equal source power, Gaussian beam needs the largest aperture opening, yielding the lowest aperture average scintillation, whilst the opposite occurs for annular Gaussian and dark hollow beams. When assessed on the basis of received power normalized aperture averaged scintillation, fixed propagation distance and aperture size, annular Gaussian and dark hollow beams seem to have the lowest scintillation. Just like the case of point-like scintillation, partially coherent beams will offer less aperture averaged scintillation in comparison to fully coherent beams. But this performance improvement relies on larger aperture openings. Upon normalizing the aperture averaged scintillation with respect to received power, fully coherent beams become more advantageous than partially coherent ones. (C) 2014 Elsevier B.V. All rights reserved.Article Citation - WoS: 9Citation - Scopus: 11Application of Equivalent Structure Constant in Scintillations and Ber Found for Non-Kolmogorov Spectrum(Elsevier Science Bv, 2014) Baykal, Yahya; Gercekcioglu, HamzaThe evaluation of system parameters in the non-Kolmogorov turbulent atmosphere involves the structure constant valid at the relevant non-Kolmogorov power law exponent. In some of the existing results, the comparisons of system parameters found under the Kolmogorov and non-Kolmogorov turbulences were made by using the same structure constant for all the power law exponents of the non-Kolmogorov spectrum. In this paper, we evaluate the scintillations and the average Bit Error Rate (< BER >) for the flat-topped and the annular beams in non-Kolmogorov turbulence, this time using the equivalent structure constant which is now different for all the power law exponents. It is observed that the scintillations and the < BER > show completely different behaviour when evaluated with the equivalent structure constant as compared to evaluations with constant structure constant. (C) 2013 Elsevier B.V. All rights reserved.Article Citation - WoS: 1Citation - Scopus: 1Application of the Method of Transition Boundary To the Half-Planes With Mixed Boundary Conditions(Elsevier Gmbh, 2020) Umul, Yusuf ZiyaThe scattering problems of waves by soft-hard and hard-soft half-planes are investigated by the method of transition boundary. The functional values at the transition boundaries are found to be identical to the ones for the soft and hard half-screens. It is shown that the factorization process should be applied by also taking into account the boundary conditions besides the principle of reciprocity. The exact diffracted field expressions are obtained for both of the half-planes.Article Citation - WoS: 4Citation - Scopus: 3Arbitrary Laser Beam Propagation in Free Space(Elsevier Science Bv, 2009) Arpali, Caglar; Baykal, Yahya; Nakiboglu, CemThe propagation of arbitrary laser beams in free space is examined. For this purpose, starting with an incident field of arbitrary field distribution, the intensity at the receiver plane is formulated via Huygens Fresnel diffraction integral. Arbitrary source field profile is produced by decomposing the source into incremental areas (pixels). The received field through the propagation in free space is found by superposing the contributions from all source incremental areas. The proposed method enables us to evaluate the received intensity originating from any type of source field. Using the arbitrary beam excitation, intensity of various laser beams such as cos-Gaussian, cosh-Gaussian, general type beams are checked to be consistent with the already existing results in literature, and the received intensity distributions are obtained for some original arbitrary beam field profiles. Our received intensity formulation for the arbitrary source field profiles presented in this paper can find application in optics communication links, reflection from rough surfaces, optical cryptography and optical imaging systems. (C) 2009 Elsevier B.V. All rights reserved.Article Citation - WoS: 53Citation - Scopus: 58Average Intensity and Spreading of an Elegant Hermite-Gaussian Beam in Turbulent Atmosphere(Optical Soc Amer, 2009) Yuan, Yangsheng; Cai, Yangjian; Qu, Jun; Eyyuboglu, Halil T.; Baykal, YahyaThe propagation of an elegant Hermite-Gaussian beam (EHGB) in turbulent atmosphere is investigated. Analytical propagation formulae for the average intensity and effective beam size of an EHGB in turbulent atmosphere are derived based on the extended Huygens-Fresnel integral. The corresponding results of a standard Hermite-Gaussian beam (SHGB) in turbulent atmosphere are also derived for the convenience of comparison. The intensity and spreading properties of EHGBs and SHGBs in turbulent atmosphere are studied numerically and comparatively. It is found that the propagation properties of EHGBs and SHGBs are much different from their properties in free space, and the EHGB and SHGB with higher orders are less affected by the turbulence. What's more, the SHGB spreads more rapidly than the EHGB in turbulent atmosphere under the same conditions. Our results will be useful in long-distance free-space optical communications. (C) 2009 Optical Society of AmericaArticle Citation - WoS: 113Citation - Scopus: 116Average Irradiance and Polarization Properties of a Radially or Azimuthally Polarized Beam in a Turbulent Atmosphere(Optical Soc Amer, 2008) Cai, Yangjian; Lin, Qiang; Eyyuboglu, Halil T.; Baykal, YahyaAnalytical formulas are derived for the average irradiance and the degree of polarization of a radially or azimuthally polarized doughnut beam (PDB) propagating in a turbulent atmosphere by adopting a beam coherence-polarization matrix. It is found that the radial or azimuthal polarization structure of a radially or azimuthally PDB will be destroyed (i.e., a radially or azimuthally PDB is depolarized and becomes a partially polarized beam) and the doughnut beam spot becomes a circularly Gaussian beam spot during propagation in a turbulent atmosphere. The propagation properties are closely related to the parameters of the beam and the structure constant of the atmospheric turbulence. (C) 2008 Optical Society of America.Article Citation - WoS: 18Citation - Scopus: 18Average Transmittance in Non-Kolmogorov Turbulence(Elsevier Science Bv, 2013) Ata, Yalcin; Baykal, Yahya; Gercekcioglu, HamzaAverage transmittance in non-Kolmogorov turbulence is evaluated. Our recently published equivalent structure constant formulation is employed in our numerical evaluations. At the fixed propagation distance and wavelength, and at the corresponding equivalent structure constant, as the power law exponent of the non-Kolmogorov spectrum increases, the on-axis transmittance is found to decrease. At the same power law exponent of the non-Kolmogorov spectrum, the off-axis transmittance is obtained to be smaller than the on-axis transmittance. Off-axis transmittance variation versus the power law exponent shows that similar to the on-axis case, increase in the power law exponent eventually causes the off-axis transmittance to decrease, however this decrease occurs at larger power law exponent for larger off-axis distance. (C) 2013 Elsevier B.V. All rights reserved.Article Citation - WoS: 33Citation - Scopus: 34Average Transmittance in Turbulence for Partially Coherent Sources(Elsevier, 2004) Baykal, YAverage intensity and power-transmittance in turbulence are formulated for a source with arbitrary degree of coherence (both spatial and temporal). Average power-transmittance is shown to reduce to the average intensity-transmittance if the receiver dimension is much less than the beam size. The average transmittance is found to attain its minimum value when the source is on the order of the Fresnel zone, irrespective of the degree of coherence of the source. We obtain the correct average intensity when the source is coherent, partially coherent and incoherent. Average transmittances due to turbulence are found for practical FSO (Free Space Optics) communication links. (C) 2003 Elsevier B.V. All rights reserved.Article Citation - WoS: 6Citation - Scopus: 8Babinet's Principle in the Fraunhofer Diffraction by a Finite Thin Wire(Elsevier Gmbh, Urban & Fischer verlag, 2011) Umul, Yusuf ZiyaThe scattered waves by a thin finite wire are evaluated by using the Rayleigh-Sommerfeld integral in the Fraunhofer approximation. The scattered fields by the complementary thin wire are also obtained with the aid of the Babinet's principle. The scattering integrals are evaluated directly. It is shown that Babinet's principle holds excellently for this problem. The scattered fields are examined numerically. (C) 2010 Elsevier GmbH. All rights reserved.Article Citation - WoS: 31Citation - Scopus: 31Ber of Annular and Flat-Topped Beams in Non-Kolmogorov Weak Turbulence(Elsevier, 2013) Gercekcioglu, Hamza; Baykal, YahyaThe average bit error rate (BER) of multi-Gaussian beams in non-Kolmogorov weak turbulence is examined. For each specific incidence of annular and flat-topped optical beam, a power law of non-Kolmogorov spectrum is found which is defined as the worst power law at which the average BER attains the maximum value. Using these values of the worst power laws, it is observed that thinner collimated annular, larger focal length annular and flatter small sized collimated flat-topped structures have a slight advantage in obtaining smaller average BER. (C) 2012 Elsevier B.V. All rights reserved.Article Citation - WoS: 17Citation - Scopus: 15Ber of Annular and Flat-Topped Beams in Strong Turbulence(Elsevier, 2013) Gercekcioglu, Hamza; Baykal, YahyaThe average bit error rate (< BER >) of annular and flat-topped beams are evaluated in strong turbulence. In this respect, our earlier results on the scintillation indices obtained by the unified Rytov method are employed and the intensity is taken to be gamma-gamma distributed. For comparison purposes, < BER > for the log-normal intensity distribution is also evaluated. It is found that for the annular beams, the ones that are thinner, possessing smaller ratio of primary to secondary beam size, and smaller focal lengths will have smaller average BER in strong turbulence. For the flat-topped beams, the ones that are flatter and possessing large source sizes have smaller average BER in strong turbulence. Large average SNR substantially reduces the average BER in weak and moderate turbulence, whereas in strong turbulence, the average BER stays at the same value no matter what the average SNR is. Comparison of the log-normal and the gamma-gamma statistics for the intensity shows that the average BER will be higher for the log-normal case when the average SNR is small and the reverse relationship holds at large average SNR. For both the gamma-gamma and the log-normal intensity distributions, < BER > obtained for the annular and the, flat-topped beams in strong turbulence is advantageous over the Gaussian beam < BER > values. (C) 2013 Elsevier B.V. All rights reserved.Article Citation - WoS: 1Citation - Scopus: 1Boundary Diffraction Wave Theory of Resistive Surfaces With Edge Discontinuities(Elsevier, 2011) Umul, Yusuf ZiyaThe line integral of the boundary diffraction wave theory is derived by considering the exact diffracted fields of a resistive half-plane. The line integral is generalized for arbitrary resistive surface with edge discontinuity. The method is applied to the diffraction problem of waves by a convex resistive spherical reflector and the resultant field expressions are investigated numerically. (C) 2011 Elsevier B.V. All rights reserved.Article Citation - WoS: 4Citation - Scopus: 4Bounds for Generalized Gamma Distributed Fading Channels(Ieee-inst Electrical Electronics Engineers inc, 2011) Gazi, OrhanIn this article, upper bounds for the outage probability and moment generating functions of the fading channels with alpha - mu distribution are derived. The proposed upper bound for the moment generating function is used in the performance evaluation of M - PSK communication systems. The derived expressions are simple to use and do not require complex software tools to evaluate. We verified the proposed expressions via numerical computations.Article Citation - WoS: 17Citation - Scopus: 16Coherence Length in Non-Kolmogorov Satellite Links(Elsevier, 2013) Baykal, YahyaBehavior of the coherence length in non-Kolmogorov satellite links is investigated. Equivalent structure constants for non-Kolmogorov spectra are employed in order to make relevant comparisons for different non-Kolmogorov power law exponents. Examining the coherence length versus the non-Kolmogorov power law exponent for different rms wind speeds, zenith angles, link lengths, structure constants and the wavelengths, the coherence length is found to decrease when the non-Kolmogorov power law exponent increases. At a fixed non-Kolmogorov power law exponent, the coherence length is found to decrease as the rms wind speed, the zenith angle or the structure constant increases and the wavelength decreases. As the link length increases, the coherence length decreases for power law exponent values smaller than that for the Kolmogorov case. However, an increase in the link length seems not to cause the coherence length to vary appreciably at power law exponent values larger than the Kolmogorov case power law exponent. (C) 2013 Elsevier B.V. All rights reserved.Article Citation - WoS: 7Citation - Scopus: 8Collision Free Row Column S-Random Interleaver(Ieee-inst Electrical Electronics Engineers inc, 2009) Yilmaz, A. Oezguer; Gazi, OrhanParallel decodable turbo codes (PDTCs) are suitable for concurrent decoding and hence have low latency. Memory collision issue is an important problem met during parallel processing. In this article, we propose a collision free interleaver for parallel processing operations. The performance of PDTCs is analyzed with the proposed random interleaver preventing the memory collision problem. Distance spectra of PDTCs with the proposed interleaves are computed and compared to those with S-random interleaver.Correction Comment on "a Survey of the New Proposal About the Photon Momentum" (Vol 148, Pg 342, 2017)(Elsevier Gmbh, Urban & Fischer verlag, 2018) Umul, Yusuf Z.
