Bilgilendirme: Kurulum ve veri kapsamındaki çalışmalar devam etmektedir. Göstereceğiniz anlayış için teşekkür ederiz.
 

Solving Multi-Term Orders Fractional Differential Equations by Operational Matrices of Bps With Convergence Analysis

dc.contributor.author Rostamy, D.
dc.contributor.author Baleanu, Dumitru
dc.contributor.author Alipour, M.
dc.contributor.author Jafari, H.
dc.contributor.author Baleanu, D.
dc.contributor.other Matematik
dc.date.accessioned 2025-09-23T12:51:10Z
dc.date.available 2025-09-23T12:51:10Z
dc.date.issued 2013
dc.description.abstract In this paper, we present a numerical method for solving a class of fractional differential equations (FDEs). Based on Bernstein Polynomials (BPs) basis, new matrices are utilized to reduce the multi-term orders fractional differential equation to a system of algebraic equations. Convergence analysis is shown by several theorems. Illustrative examples are included to demonstrate the validity and applicability of this method. en_US
dc.identifier.citation Rostamy, Davood...et al. (2013). "Solving multi-term orders fractional differential equations by operational matrices of BPs with convergence analysis", Romanian Reports in Physics, Vol. 65, No. 2, pp. 334-349. en_US
dc.identifier.issn 1841-8759
dc.identifier.scopus 2-s2.0-84877270201
dc.identifier.uri https://hdl.handle.net/20.500.12416/15606
dc.language.iso en en_US
dc.relation.ispartof Romanian Reports in Physics en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Bernstein Polynomials en_US
dc.subject Caputo Derivative en_US
dc.subject Convergence Analysis en_US
dc.subject Fractional Differential Equations en_US
dc.subject Operational Matrix en_US
dc.title Solving Multi-Term Orders Fractional Differential Equations by Operational Matrices of Bps With Convergence Analysis en_US
dc.title Solving multi-term orders fractional differential equations by operational matrices of BPs with convergence analysis tr_TR
dc.type Article en_US
dspace.entity.type Publication
gdc.author.scopusid 36946452100
gdc.author.scopusid 57220772685
gdc.author.scopusid 26642881400
gdc.author.scopusid 7005872966
gdc.author.yokid 56389
gdc.coar.access metadata only access
gdc.coar.type text::journal::journal article
gdc.description.department Çankaya University en_US
gdc.description.departmenttemp Rostamy D., Department of Mathematics, Imam Khomeini International University, Qazvin, P.O. Box 34149-16818, Iran; Alipour M., Department of Mathematics, Imam Khomeini International University, Qazvin, P.O. Box 34149-16818, Iran; Jafari H., Department of Mathematics, University of Mazandaran, Babolsar, P.O. Box 47416-95447, Iran; Baleanu D., Department of Mathematics and Computer Science, Cankaya University, 06530 Ankara, Turkey, Institute of Space Sciences, RO-77125, Magurele-Bucharest, P.O.BOX MG-23, Romania en_US
gdc.description.endpage 349 en_US
gdc.description.issue 2 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q2
gdc.description.startpage 334 en_US
gdc.description.volume 65 en_US
gdc.description.wosquality Q2
gdc.scopus.citedcount 61
gdc.virtual.author Baleanu, Dumitru
relation.isAuthorOfPublication f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isAuthorOfPublication.latestForDiscovery f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isOrgUnitOfPublication 26a93bcf-09b3-4631-937a-fe838199f6a5
relation.isOrgUnitOfPublication 28fb8edb-0579-4584-a2d4-f5064116924a
relation.isOrgUnitOfPublication 0b9123e4-4136-493b-9ffd-be856af2cdb1
relation.isOrgUnitOfPublication.latestForDiscovery 26a93bcf-09b3-4631-937a-fe838199f6a5

Files