Uniqueness and Existence of Positive Solutions for Singular Fractional Differential Equations
| dc.contributor.author | Nyamoradi, Nemat | |
| dc.contributor.author | Baleanu, Dumitru | |
| dc.contributor.author | Bashiri, Tahereh | |
| dc.contributor.author | Vaezpour, S. Mansour | |
| dc.contributor.author | Baleanu, Dumitru | |
| dc.contributor.other | Matematik | |
| dc.date.accessioned | 2025-09-23T12:51:02Z | |
| dc.date.available | 2025-09-23T12:51:02Z | |
| dc.date.issued | 2014 | |
| dc.description | Nyamoradi, Nemat/0000-0002-4172-7658; Vaezpour, S. Mansour/0000-0003-3909-4203 | en_US |
| dc.description.abstract | In this article, we study the existence of positive solutions for the singular fractional boundary value problem [GRAPHICS] where 1 < alpha <= 2, 0 < xi <= 1/2, a is an element of [0, infinity), 1 < alpha - delta < 2, 0 < beta(i) < 1, A, B-i, 1 <= i <= k, are real constant, D-alpha is the Reimann-Liouville fractional derivative of order alpha. By using the Banach's fixed point theorem and Leray-Schauder's alternative, the existence of positive solutions is obtained. At last, an example is given for illustration. | en_US |
| dc.identifier.citation | Nyamoradi, Nemat...et.al.(2014). "Uniqueness and existence of positive solutions forsingular fractional differential equations" Electronic Journal Of Differential Equations, No.130. | en_US |
| dc.identifier.issn | 1072-6691 | |
| dc.identifier.scopus | 2-s2.0-84902097378 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.12416/15587 | |
| dc.language.iso | en | en_US |
| dc.publisher | Texas State Univ | en_US |
| dc.rights | info:eu-repo/semantics/closedAccess | en_US |
| dc.subject | Existence Of Solutions | en_US |
| dc.subject | Banachs Fixed Point Theorem | en_US |
| dc.subject | Leray-Schauders Alternative | en_US |
| dc.title | Uniqueness and Existence of Positive Solutions for Singular Fractional Differential Equations | en_US |
| dc.title | Uniqueness and existence of positive solutions forsingular fractional differential equations | tr_TR |
| dc.type | Article | en_US |
| dspace.entity.type | Publication | |
| gdc.author.id | Nyamoradi, Nemat/0000-0002-4172-7658 | |
| gdc.author.id | Vaezpour, S. Mansour/0000-0003-3909-4203 | |
| gdc.author.scopusid | 24381820400 | |
| gdc.author.scopusid | 55256197000 | |
| gdc.author.scopusid | 25723594600 | |
| gdc.author.scopusid | 7005872966 | |
| gdc.author.wosid | Baleanu, Dumitru/B-9936-2012 | |
| gdc.author.wosid | Vaezpour, S./Aac-4816-2021 | |
| gdc.author.yokid | 56389 | |
| gdc.description.department | Çankaya University | en_US |
| gdc.description.departmenttemp | [Nyamoradi, Nemat] Razi Univ, Fac Sci, Dept Math, Kermanshah 67149, Iran; [Bashiri, Tahereh; Vaezpour, S. Mansour] Amirkabir Univ Technol, Dept Math & Comp Sci, Tehran, Iran; [Baleanu, Dumitru] Cankaya Univ, Dept Math & Comp Sci, Fac Art & Sci, TR-06530 Ankara, Turkey; [Baleanu, Dumitru] Inst Space Sci, R-76900 Magurele, Romania; [Baleanu, Dumitru] King Abdulaziz Univ, Fac Engn, Dept Chem & Mat Engn, Jeddah 21589, Saudi Arabia | en_US |
| gdc.description.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| gdc.description.scopusquality | Q3 | |
| gdc.description.woscitationindex | Science Citation Index Expanded | |
| gdc.description.wosquality | Q2 | |
| gdc.identifier.wos | WOS:000338329100003 | |
| gdc.publishedmonth | 6 | |
| gdc.scopus.citedcount | 12 | |
| gdc.virtual.author | Baleanu, Dumitru | |
| gdc.wos.citedcount | 11 | |
| relation.isAuthorOfPublication | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
| relation.isAuthorOfPublication.latestForDiscovery | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
| relation.isOrgUnitOfPublication | 26a93bcf-09b3-4631-937a-fe838199f6a5 | |
| relation.isOrgUnitOfPublication | 28fb8edb-0579-4584-a2d4-f5064116924a | |
| relation.isOrgUnitOfPublication | 0b9123e4-4136-493b-9ffd-be856af2cdb1 | |
| relation.isOrgUnitOfPublication.latestForDiscovery | 26a93bcf-09b3-4631-937a-fe838199f6a5 |