Bilgilendirme: Kurulum ve veri kapsamındaki çalışmalar devam etmektedir. Göstereceğiniz anlayış için teşekkür ederiz.
 

An Efficient Collocation Technique for Solving Generalized Fokker-Planck Type Equations With Variable Coefficients

dc.contributor.author Bhrawy, A. H.
dc.contributor.author Baleanu, Dumitru
dc.contributor.author Ahmed, Engy A.
dc.contributor.author Baleanu, D.
dc.contributor.other Matematik
dc.date.accessioned 2025-09-23T12:48:07Z
dc.date.available 2025-09-23T12:48:07Z
dc.date.issued 2014
dc.description.abstract This paper proposes an efficient numerical integration process for the generalized Fokker-Planck equation with variable coefficients. For spatial discretization the Jacobi-Gauss-Lobatto collocation (J-GL-C) method is implemented in which the Jacobi-Gauss-Lobatto points are used as collocation nodes for spatial derivatives. This approach has the advantage of obtaining the solution in terms of the Jacobi parameters alpha and beta. Using the above technique, the problem is reduced to the solution of a system of ordinary differential equations in tithe. This system can be also solved by standard numerical techniques. Our results demonstrate that the proposed method is a powerful algorithm for solving nonlinear partial differential equations. en_US
dc.identifier.citation Bhrawy, A.H.; Ahmed, E.A.; Baleanu, D.,"An Efficient Collocation Technique for Solving Generalized Fokker-Planck Type Equations With Variable Coefficients", Proceedings of the Romanian Academy Series A - Mathematics Physics Technical Sciences Information Science, Vol. 14, No. 4, pp. 322-330, (2014). en_US
dc.identifier.issn 1454-9069
dc.identifier.scopus 2-s2.0-84916932013
dc.identifier.uri https://hdl.handle.net/20.500.12416/15234
dc.language.iso en en_US
dc.publisher Editura Acad Romane en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Time-Dependent Fokker-Plank Equation en_US
dc.subject Generalized Fokker-Plank Equation en_US
dc.subject Real Newell-Whitehead Equation en_US
dc.subject Collocation Method en_US
dc.subject Implicit Runge-Kutta Method en_US
dc.title An Efficient Collocation Technique for Solving Generalized Fokker-Planck Type Equations With Variable Coefficients en_US
dc.title An Efficient Collocation Technique for Solving Generalized Fokker-Planck Type Equations With Variable Coefficients tr_TR
dc.type Article en_US
dspace.entity.type Publication
gdc.author.scopusid 14319102000
gdc.author.scopusid 57213222009
gdc.author.scopusid 7005872966
gdc.author.wosid Ahmed, Engy/Ivu-8242-2023
gdc.author.wosid Bhrawy, Ali/D-4745-2012
gdc.author.wosid Baleanu, Dumitru/B-9936-2012
gdc.author.yokid 56389
gdc.description.department Çankaya University en_US
gdc.description.departmenttemp [Bhrawy, A. H.] King Abdulaziz Univ, Fac Sci, Dept Math, Jeddah, Saudi Arabia; [Bhrawy, A. H.; Ahmed, Engy A.] Beni Suef Univ, Fac Sci, Dept Math, Bani Suwayf, Egypt; [Baleanu, D.] King Abdulaziz Univ, Fac Engn, Dept Chem & Mat Engn, Jeddah 21413, Saudi Arabia; [Baleanu, D.] Cankaya Univ, Fac Arts & Sci, Dept Math & Comp Sci, Ankara, Turkey; [Baleanu, D.] Inst Space Sci, Magurele, Romania en_US
gdc.description.endpage 330 en_US
gdc.description.issue 4 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q4
gdc.description.startpage 322 en_US
gdc.description.volume 15 en_US
gdc.description.woscitationindex Science Citation Index Expanded
gdc.description.wosquality Q3
gdc.identifier.wos WOS:000346219300002
gdc.publishedmonth 10
gdc.scopus.citedcount 28
gdc.virtual.author Baleanu, Dumitru
gdc.wos.citedcount 27
relation.isAuthorOfPublication f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isAuthorOfPublication.latestForDiscovery f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isOrgUnitOfPublication 26a93bcf-09b3-4631-937a-fe838199f6a5
relation.isOrgUnitOfPublication 28fb8edb-0579-4584-a2d4-f5064116924a
relation.isOrgUnitOfPublication 0b9123e4-4136-493b-9ffd-be856af2cdb1
relation.isOrgUnitOfPublication.latestForDiscovery 26a93bcf-09b3-4631-937a-fe838199f6a5

Files