Makine Mühendisliği Bölümü Yayın Koleksiyonu
Permanent URI for this collectionhttps://hdl.handle.net/20.500.12416/263
Browse
Browsing Makine Mühendisliği Bölümü Yayın Koleksiyonu by WoS Q "Q3"
Now showing 1 - 20 of 33
- Results Per Page
- Sort Options
Article Citation - WoS: 1Citation - Scopus: 1Analyses of Plate Perforation for Various Penetrator-Target Plate Combinations(Korean Soc Mechanical Engineers, 2022) Akyurek, TurgutIn this study, kinetics and kinematics of perforation process for various penetrator-target plate combinations is analyzed, a methodology in a flow chart format to decide on failure mode, and for each failure mode, an appropriate combined analytical model that requires only common test data is proposed. The proposed methodology and analytical models that are recommended for the related failure mode are assessed by using a huge amount of test data from the literature. The penetrator-target plate configurations cover the penetrators with ogive, conical, hemi-spherical and blunt noses, at different plate thicknesses, and plate thickness to penetrator diameter ratios, made of different metallic materials. Analyzed failure modes include ductile hole enlargement, plugging, dishing, and petal forming. Assessment is done for impact velocities ranging between 215-863 m/s. The estimations based on the proposed flow chart and recommended failure models are in good agreement with the related test data and numerical analysis results.Conference Object Citation - WoS: 12Analysis and Characterization of an Electrostatically Actuated In-Plane Parylene Microvalve(Iop Publishing Ltd, 2011) Kulah, H.; Yildirim, E.This paper presents analysis and implementation of a simple electrostatic microvalve designed for use in parylene-based lab-on-a-chip devices. The microvalve utilizes an in-plane collapsing diaphragm. To investigate the pull-in behavior of the diaphragm and flow characteristics, a thorough analysis is carried out using the finite element method. Microvalves with different diaphragm radii are fabricated using surface micromachining techniques. Pull-in tests are carried out under the no-flow condition with air, oil and water as the working fluid. Test results show that the pull-in occurs around 20 V for 450 mu m radius diaphragms with oil and air. However, it is not possible to observe pull-in up to 100 V (both ac and dc) for the case of water as the working fluid, due to its relatively high dielectric constant and conductivity. The flow tests show that no leakage flow was observed up to 4 kPa inlet pressure under 85 V actuation potential. The leakage ratio becomes 17% at 10 kPa inlet pressure. It is observed that the leakage can be reduced controllably by increasing the actuation potential, enabling the precise control of the flow rate.Article Citation - WoS: 2Citation - Scopus: 2Analysis and Simplified Modelling of Simulation of Tests for Medium-Duty Truck Collision With Twin Anti-Ram Bollards(Taylor & Francis Ltd, 2020) Akyurek, TurgutAn actual test of medium-duty truck collision with twin anti-ram bollards of steel tube is analysed and simulated with different mass-spring-damper models to study bollard design requirements. Test data is obtained from test report of a medium-duty truck crashed into two fixed twin bollards at speed 78.3 km/h. Maximum impact load and impact height at that time is important in the analysis. Bollard height should be close to or larger than the vehicle's centre of gravity height to avoid climbing of the truck on the bollard. However, increasing impact height yields also increase in failure risk of bollard. Foundation is also critical in success of the bollard in successfully stopping the vehicle. The bollard should be fixed to the frame embedded in the concrete foundation so that the deformation in concrete be minimised. The bollard should be so stiff to stop the vehicle while most of the impact energy is absorbed by the vehicle through deformation of its frontal sections. A single-degree freedom linear mass-spring-damper model is the simplest model, but its results are not in line with test data. Single-degree non-linear model simulates the peak load but not the load history. However, using engine mass instead of truck mass in the single-degree model provides acceptable impact force data for the bollard. Two-degree freedom mass-spring damper linear model seems to simulate both truck's and bollard's deformation in a good manner. Non-linear analysis simulates the collision in a more realistic way, but it requires more data to be determined with testing.Article Citation - WoS: 5Citation - Scopus: 5Analysis and Testing of a Contraction-And Micromixer for Micromilled Microfluidics(Springer Heidelberg, 2017) Yildirim, EnderIn this paper, numerical analysis and experimental investigation of a micromixer, which was specifically designed for microfluidic devices fabricated by micromilling, is presented. The mixer is composed of series of contractions and expansions in zigzag arrangement along a mixing channel. Mixers, fabricated by micromilling on polymethylmethacrylate (PMMA), were tested with %0.1 Ponceau 4R red food dye solution and distilled water. According to experiment results, over 70% mixing efficiency could be obtained for the flows with Reynolds number (Re) greater than 40. It was also numerically shown that by increasing the number of successive contractions and expansions, it could be possible to achieve over 80% mixing efficiency when Re = 55 for the species with diffusion coefficient of 5 x 10(-9) m(2)/s. Although the micromixer was specifically designed for micromilling, it is expected that the mixer can be useful in any microfluidic device fabricated by any other technique.Article Citation - WoS: 7Citation - Scopus: 8Analysis of Heat Transfer Enhancement of Passive Methods in Tubes With Machine Learning(Sage Publications Ltd, 2024) Ayli, Ece; Turkoglu, Hasmet; Yapici, Ekin OzgirginThis study investigates the efficacy of machine learning techniques and correlation methods for predicting heat transfer performance in a dimpled tube under varying flow conditions, including the presence of nanoparticles. A comprehensive numerical analysis involving 120 cases was conducted to obtain Nusselt numbers and friction factors, considering different dimple depths and velocities for both pure water and water-Al2O3 nanofluid at 1%, 2%, and 3% volume concentrations. Utilizing the data acquired from the numerical simulations, a correlation equation, SVM ANN architectures were developed. The predictive capabilities of the statistical approach, ANN, and SVM models for Nusselt number distribution and friction factor were meticulously assessed through mean average percentage error (MAPE) and correlation coefficients (R2). The research findings reveal that machine learning techniques offer a highly effective approach for accurately predicting heat transfer performance in a dimpled tube, with results closely aligned with Computational Fluid Dynamics (CFD) simulations. Particularly noteworthy is the superior performance of the ANN model, demonstrating the most precise predictions with an error rate of 2.54% and an impressive R2 value of 0.9978 for Nusselt number prediction. In comparison, the regression model achieved an average error rate of 6.14% with an R2 value of 0.8623, and the SVM model yielded an RMSE value of 2.984% with an R2 value of 0.9154 for Nusselt number prediction. These outcomes underscore the ANN model's ability to effectively capture complex patterns within the data, resulting in highly accurate predictions. In conclusion, this research showcases the promising potential of machine learning techniques in accurately forecasting heat transfer performance in dimpled tubes. The developed ANN model exhibits notable superiority in predicting Nusselt numbers, making it a valuable tool for enhancing thermal system analyses and engineering design optimization.Article Citation - WoS: 19Citation - Scopus: 20Bioglass-Polymer Composite Scaffolds for Bone Tissue Regeneration: a Review of Current Trends(Taylor & Francis Ltd, 2024) Motameni, Ali; Cardakli, Ismail Seckin; Gurbuz, Riza; Alshemary, Ammar Z. Z.; Razavi, Mehdi; Farukoglu, Omer CanBiocompatible and bioactive composite scaffolds are essential in bone tissue regeneration because of their bioactivity and multilevel porous assemblies. There is a high demand for three-dimensional (3D) scaffolds to treat bone regeneration defects, trauma, and congenital skeletal abnormalities in the current scenario. The main objective of this review is to collect all the possible information concerning synthetic and natural polymer-Bioglass (BG)-based scaffold materials and systematically present them to summarize the importance and need for these materials. The importance of the bone tissue engineering field has been highlighted. Given the current challenges, a comprehensive description of materials fabrication and patterns in scaffold structures is required. This review also includes the most crucial aspect of this study: why are polymeric materials mixed with BG materials? Individually, both BG and polymeric materials lack specific essential characteristics to enhance the scope of these materials. However, preparing the composites of both ensures the researchers that composites of polymers and BG have improved properties that make them versatile materials for bone tissue engineering applications. This study deals with the individual drawbacks of the inorganic BGs, synthetic polymers, and the deficiencies of natural polymers. This study has also included a brief description of various scaffold fabricating techniques. Finally, this study revealed that by manufacturing and developing novel composite materials-scaffolds bearing the capability to repair, heal, and regenerate accidentally damaged or badly injured bones, many occasional problems can be solved in vivo and in vitro. Moreover, this review demonstrated that natural polymeric materials present many advantages over synthetic bone grafts. Yet, synthetic biomaterials have one additional attractive feature, as they have the flexibility to be designed according to the desired demands. These features make them the best choice for a wide range of bone tissue engineering projects for orthopedic surgeons.Article Citation - WoS: 3Citation - Scopus: 3A Comparative Study of Effects of Additive Particle Size and Content on Wetting Behavior and Brazing Performance of C/Sic Composite(Springer, 2023) Esen, Ziya; Dericioglu, Arcan F.; Saltik, SimgeThis study has focused on the influence of size and content of SiC particle incorporation on the wetting behavior of the Ticusil brazing filler alloy and on its brazing performance in C/SiC composite/Ti6Al4V alloy joints. The effect of the size and content of additive SiC particles on the variation of molten brazing filler alloy contact angle was recorded at various brazing time and temperatures. Moreover, the microstructural evolution and mechanical properties of the additive containing C/SiC composite/Ti6Al4V alloy joints produced by the brazing method were investigated. The contact angles in both brazing filler alloys containing nano- and micro-sized SiC particles exhibited a sudden decrease with time during isothermal holding as observed in as-received brazing filler alloys. As the quantity of the SiC particles increased in the brazing alloy, the recorded contact angle values including the final, stable contact angle increased, while the time for the drastic contact angle change also increased remarkably. Compared to as-received counterparts, the addition of 2 wt.% nano-sized SiC and 1 wt.% micro-sized SiC particles improved the shear strength of the joints by 35 and 8%, respectively. Although the recorded contact angle values were close to each other in brazing alloys containing SiC particles with different sizes (37 and 42 degrees for 1 wt.% micro-sized and 2 wt.% nano-sized additions), higher increment was achieved in the mechanical performance of the joints with nano-sized SiC additive due to more homogeneous reinforcement effect of the nanoparticles. The results indicated that the optimum brazing filler alloy contact angle for the highest shear strength is similar to 40 degrees for both nano- and micron-sized additive containing Ticusil filler alloy.Article Citation - WoS: 14Citation - Scopus: 16A Comparative Study of Multiple Regression and Machine Learning Techniques for Prediction of Nanofluid Heat Transfer(Asme, 2022) Ayli, Ece; Turkoglu, Hasmet; Kocak, EyupThe aim of this article is to introduce and discuss prediction power of the multiple regression technique, artificial neural network (ANN), and adaptive neuro-fuzzy interface system (ANFIS) methods for predicting the forced convection heat transfer characteristics of a turbulent nanofluid flow in a pipe. Water and Al2O3 mixture is used as the nanofluid. Utilizing fluent software, numerical computations were performed with volume fraction ranging between 0.3% and 5%, particle diameter ranging between 20 and 140 nm, and Reynolds number ranging between 7000 and 21,000. Based on the computationally obtained results, a correlation is developed for the Nusselt number using the multiple regression method. Also, based on the computational fluid dynamics results, different ANN architectures with different number of neurons in the hidden layers and several training algorithms (Levenberg-Marquardt, Bayesian regularization, scaled conjugate gradient) are tested to find the best ANN architecture. In addition, ANFIS is also used to predict the Nusselt number. In the ANFIS, number of clusters, exponential factor, and membership function (MF) type are optimized. The results obtained from multiple regression correlation, ANN, and ANFIS were compared. According to the obtained results, ANFIS is a powerful tool with a R-2 of 0.9987 for predictions.Article Citation - WoS: 3Citation - Scopus: 3Critical Decision Making for Rehabilitation of Hydroelectric Power Plants(Taylor & Francis inc, 2023) Westerman, Jerry; Celebioglu, Kutay; Ayli, Ece; Ulucak, Oguzhan; Aradag, SelinDue to their diminishing performance, reliability, and maintenance requirements, there has been a rise in the demand for the restoration and renovation of old hydroelectric power facilities in recent decades. Prior to initiating a rehabilitation program, it is crucial to establish a comprehensive understanding of the power plant's current state. Failure to do so may result in unnecessary expenses with minimal or no improvements. This article presents a systematic rehabilitation methodology specifically tailored for Francis turbines, encompassing a methodological approach for condition assessment, performance testing, and evaluation of rehabilitation potential using site measurements and CFD analysis, and a comprehensive decision-making process. To evaluate the off-design performance of the turbines, a series of simulations are conducted for 40 different flow rate and head combinations, generating a hill chart for comprehensive evaluation. Various parameters that significantly impact the critical decision-making process are thoroughly investigated. The validity of the reverse engineering-based CFD methodology is verified, demonstrating a minor difference of 0.41% and 0.40% in efficiency and power, respectively, between the RE runner and actual runner CFD results. The optimal efficiency point is determined at a flow rate of 35.035 m(3)/s, achieving an efficiency of 94.07%, while the design point exhibits an efficiency of 93.27% with a flow rate of 38.6 m(3)/s. Cavitation is observed in the turbine runner, occupying 27% of the blade suction area at 110% loading. The developed rehabilitation methodology equips decision-makers with essential information to prioritize key issues and determine whether a full-scale or component-based rehabilitation program is necessary. By following this systematic approach, hydroelectric power plants can efficiently address the challenges associated with aging Francis turbines and optimize their rehabilitation efforts.Article Citation - WoS: 7Citation - Scopus: 7Development and Experimental Investigation of Electrochemical Drilling Method Using Rotary Tube Tool(Gazi Univ, Fac Engineering Architecture, 2013) Ozerkan, H. Bekir; Çoğun, Can; Cogun, Can; Mekatronik MühendisliğiIn this study, a new hybrid electrochemical drilling (ECD) method, based on electrochemical machining in nonconventional machining processes, was developed. In the developed method, tube tool makes rotary motion together with inner through hole flushing. A small scale prototype ECD machine has been designed and manufactured to test the developed method. One of the important features of the new system is the regulation of tool feed rate using current feedback control. The Hadfield (manganese) steel, whose strain hardening behavior makes it very difficult to machine with conventional methods, and AISI 1040 steel, whose machinability is fairly good, were drilled using the prototype machine and results were compared. Workpiece material removal rate increased with the increasing machining voltage, tool rotational speed, electrolyte concentration and flushing pressure in both types of steels. Average radial overcut values increased with the rotational speed of the tool. The AISI 1040 steel hole geometries were regular than that of Hadfield steel. Experimental results showed that deep holes can be drilled successfully with the proposed hybrid ECD method.Article Citation - WoS: 3Citation - Scopus: 3Empirical and Statistical Modeling of Heat Loss From Surface of a Cement Rotary Kiln System(Gazi Univ, Fac Engineering Architecture, 2013) Simsek, Baris; Altunok, Taner; Simsek, Emir H.; Altunok, Taner; Makine MühendisliğiIn branches of industry too much energy consuming such as cement sector, controlled use of energy, only it is possible to know how energy is distributed in the system. In cement production process, a large portion of the heat losses which is due to energy consumption consist of convection and radiation heat losses from the surface of rotary kiln. In this study, empirical equation was derived for heat loss from surface of rotary kiln in a cement factory using empirical equations and statistical modeling techniques by the help of temperatures measured surface of rotary kiln. Measured with thermal cameras and the data necessary for experimental modeling was obtained the factory central control room. Total heat loss of system was calculated using Matlab. Statistical analysis related to results was carried out by Minitab 15.1.1 program. It was concluded that heat losses throughout rotary kiln increased toward the center of the kiln.Article Citation - WoS: 4Citation - Scopus: 7Enhanced Gradient Crystal-Plasticity Study of Size Effects in a Β-Titanium Alloy(Iop Publishing Ltd, 2017) Nowag, Kai; Roy, Anish; Ghisleni, Rudy; Michler, Johann; Silberschmidt, Vadim V.; Demiral, MuratA calibrated model of enhanced strain-gradient crystal plasticity is proposed, which is shown to characterize adequate deformation behaviour of bcc single crystals of a beta-Ti alloy (Ti-15-3-3-3). In this model, in addition to strain gradients evolving in the course of deformation, incipient strain gradients, related to a component's surface-to-volume ratio, is accounted for. Predictive capabilities of the model in characterizing a size effect in an initial yield and a work-hardening rate in small-scale components is demonstrated. The characteristic length-scale, i.e. the component's dimensions below which the size effect is observed, was found to depend on densities of polar and statistical dislocations and interaction between them.Article EXPERIMENTAL AND NUMERICAL ANALYSIS OF FLOW OVER A PICKUP TRUCK(2021) İnce, İbrahim Timuçin; Mercan, Hatice; Onur, NevzatThe drag forces and the overall drag coefficient of a typical pickup truck are investigated experimentally and the 3D numerical analysis is performed. A detailed 1/4-scale model is constructed and experiments are performed at Reynolds numbers around 2 × 106in the Ankara Wind Tunnel (ART). The experimental study is divided into two stages: in the first stage the pressure distribution along the symmetry axis is measured and in the second stage the drag forces and overall drag coefficient are measured at five different wind speeds. The measured data are compared with the 3D numerical simulation performed in FLUENT. The turbulence standard, realizable, and RNG k-∈ models, the standard and SST k-ω models, and finally the RSM are compared for three near-wall treatments: standard wall function, nonequilibrium wall function, and enhanced wall function. The comparison revealed that for lower velocities the best turbulence model-wall treatment couple is the realizable k-∈ model with Reynolds stress model with standard wall function, whereas for higher velocities the standard k-∈ turbulence model is observed to be more compatible with experimental data. The highest pressure value is measured in front of the pickup truck and the lowest pressure value is evaluated at the rim where the windshield and the roof meet. © 2021 Begell House Inc.. All rights reserved.Article Experimental and Numerical Investigation of Transition To Turbulent Flow and Heat Transfer Inside a Horizontal Smooth Rectangular Duct Under Uniform Bottom Surface Temperature(Springer, 2013) Onur, Nevzat; Arslan, KamilIn this study, steady-state turbulent forced flow and heat transfer in a horizontal smooth rectangular duct both experimentally and numerically investigated. The study was carried out in the transition to turbulence region where Reynolds numbers range from 2,323 to 9,899. Flow is hydrodynamically and thermally developing (simultaneously developing flow) under uniform bottom surface temperature condition. A commercial CFD program Ansys Fluent 12.1 with different turbulent models was used to carry out the numerical study. Based on the present experimental data and three-dimensional numerical solutions, new engineering correlations were presented for the heat transfer and friction coefficients in the form of and , respectively. The results have shown that as the Reynolds number increases heat transfer coefficient increases but Darcy friction factor decreases. It is seen that there is a good agreement between the present experimental and numerical results. Examination of heat and mass transfer in rectangular cross-sectioned duct for different duct aspect ratio (alpha) was also carried out in this study. Average Nusselt number and average Darcy friction factor were expressed with graphics and correlations for different duct aspect ratios.Article Citation - WoS: 17Citation - Scopus: 20Experimental Investigation of Flow and Heat Transfer in Rectangular Cross-Sectioned Duct With Baffles Mounted on the Bottom Surface With Different Inclination Angles(Springer, 2014) Onur, Nevzat; Arslan, KamilIn this study, steady-state forced convection heat transfer and pressure drop characteristics in a horizontal rectangular cross-sectioned duct, baffles mounted on the bottom surface with different inclination angles were investigated experimentally in the Reynolds number range from 1 x 10(3) to 1 x 10(4). The study was performed under turbulent flow conditions. Effects of different baffle inclination angles on flow and heat transfer were studied. Results are also presented in terms of thermal enhancement factor. It is observed that increasing in baffle inclination angle enhances the heat transfer and causes an increase in pressure drop in the duct.Article Citation - WoS: 12Citation - Scopus: 16Fast Fluorometric Enumeration of E. Coli Using Passive Chip(Elsevier, 2019) Cogun, Ferah; Yildirim, Ender; Boyaci, Ismail Haklu; Cetin, Demet; Ertas, Nusret; Kasap, Esin Nagihan; Dogan, UzeyirIn this report, a passive microfluidic chip design was developed for fast and sensitive fluorometric determination of Escherichia coli (E. coli) based on sandwich immunoassay. Initially, magnetic nanoparticles (MNPs) and chitosan modified mercaptopropionic acid capped cadmium telluride (CdTe) quantum dots (QDs) were functionalized with E.coli specific antibody to form a sandwich immunoassay with the E. coli. The magnetic separation and preconcentration of the E.coli from the sample solution was performed in the vial. Conjugation of QDs to the magnetically captured E. coli and washing were performed using a passive type of microchip. The microfluidic chip consists of four microchambers connected to each other by microchannels which act as capillary valves. Signal measurement was performed at the last chamber by using a hand-held spectrofluorometer equipped with a fiber optic reflection probe. The selectivity of the method was tested with Enterobacter aerogenes (E. aerogenes) and Salmonella enteritidis (S. enteritidis), it was observed that these bacteria have no interference effect on E.coli determination. The calibration curve was found to be linear in the range of 10(1)-10(5) cfu/mL with a correlation coefficient higher than 0.99. The limit of detection was calculated as 5 cfu/mL. The method was successfully applied to spiked tap and lake water samples. The results suggest that the developed method is applicable for on-site E. coli detection and offers several advantages such as large dynamic range, high sensitivity, high selectivity and short analysis time.Article Citation - Scopus: 4Fused Filament Fabrication in Cad Education: a Closed-Loop Approach(Sage Publications inc, 2025) Totuk, Onat Halis; Selvi, Ozguen; Akar, SametIntegrating low-cost fused filament fabrication 3D printing as a foundation for learning 3D modelling is explored. This method blends traditional computer aided design (CAD) instruction with additive manufacturing possibilities. Experimental results demonstrate increased comprehension speed and reduced learning time. This hands-on approach empowers students by enabling direct engagement with the modelling process. Analogous to reverse engineering, the strategy instructs engineering students from final product to model creation, closing the gap between theory and practice. Incorporating 3D printing bridges this divide, enhancing understanding, creativity and problem-solving. The study underscores technology's influence on learning strategies, aligning with the surge of 3D printing in education. Results link advanced design technology usage to improved student performance, with 3D-printed materials yielding 45% higher grades and 30% faster task completion. This study advocates curricular advancement for design-focused careers through enhanced technology integration and favourable 3D printing model reception.Article Citation - WoS: 4Citation - Scopus: 4Hybrid Force and Motion Control of Flexible Joint Parallel Manipulators Using Inverse Dynamics Approach(Taylor & Francis Ltd, 2014) Ider, S. Kemal; Korkmaz, OzanAn inverse dynamics control algorithm is developed for hybrid motion and contact force trajectory tracking control of flexible joint parallel manipulators. First, an open-tree structure is considered by the disconnection of adequate number of unactuated joints. The loop closure constraint equations are then included. Elimination of the joint reaction forces and the other intermediate variables yield a fourth-order relation between the actuator torques and the end-effector position and contact force variables, showing that the control torques do not have an instantaneous effect on the end-effector contact forces and accelerations because of the flexibility. The proposed control law provides simultaneous and asymptotically stable control of the end-effector contact forces and the motion along the constraint surfaces by utilizing the feedback of positions and velocities of the actuated joints and rotors. A two degree of freedom planar parallel manipulator is considered as an example to illustrate the effectiveness of the method.Article Citation - WoS: 3Citation - Scopus: 3Investigation of Aerodynamic and Aeroacoustic Behavior of Bio-Inspired Airfoils With Numerical and Experimental Methods(Sage Publications Ltd, 2024) Kocak, Eyup; Aradag, Selin; Guzey, Kaan; Ayli, Ulku EceThis article presents numerical and experimental studies on the aerodynamic and aeroacoustic characteristics of the NACA0012 profile with owl-inspired leading-edge serrations for aeroacoustic control. The leading-edge serrations under investigation are in a sinusoidal profile with two main design parameters of wavelength and amplitude. The noise-suppressing ability of sinusoidal serrations is a function of several parameters such as amplitude, wavelength, inflow speed, angle of attack, which are examined in this study. Amplitude (A) and wavelength (& lambda;) of the serration are varied between 1.25 and 2.5, 20 < & lambda; < 60, respectively. The corresponding Reynolds numbers are between 1 and 3 x 10(5). The angle of attack for each configuration is changed between 4 & DEG; and 16 & DEG;. Forty different configurations are tested. According to the results, owl-inspired leading-edge serrations can be used as aeroacoustic control add-ons in blade designs for wind turbines, aircraft, and fluid machinery. Results show that the narrower and sharper serrations have a better noise reduction effect. Overall sound pressure level (SPL) reduces up to 20% for the configuration with the largest amplitude and smaller wavelength. The results also showed that serration amplitude had a distinct effect on aeroacoustic performance, whereas wavelength is a function of amplitude. At the smaller angle of attack values, AOA < 8 & DEG;, the lift and drag coefficients are almost the same for both clean and wavy profiles. On the other hand, typically for angle of attack values more than 12 & DEG; (after stall), when the angle of attack is increased, serration adversely affects aerodynamic performance.Article Kinematic Analyses of Metallic Plate Perforation by Penetrators With Various Nose Geometries(defence Scientific information Documentation Centre, 2022) Akyurek, T.This study analyses kinematics of a metallic plate perforation by a penetrator with truncated ogive nose geometry to find solutions also to blunt, conical, ogive, and hemi-spherical nosed penetrators. Plugging, ductile hole enlargement, dishing, and petal forming failure modes are used in the analyses. Acceleration throughout perforation is calculated by using the related failure mode, analytical model, and the target-penetrator interaction geometry. Depending on the failure model; back lip and front lip formation during ductile hole enlargement, plug formation during plugging, and deflection of target plate during dishing is also analysed. Analyses are based on projectile???s equation of motion, momentum and energy equations, and projectile-target plate interactions. The analyses results for selected cases, with the impact velocity range 215-863 m/s, are compared with the test data. The residual velocity estimation for a strike velocity is close to the related test data with an error of 0.3-2.2 %, except for conical nosed penetrators at impact velocities approaching the ballistic limit velocity.
