WoS İndeksli Yayınlar Koleksiyonu
Permanent URI for this collectionhttps://hdl.handle.net/20.500.12416/8653
Browse
Browsing WoS İndeksli Yayınlar Koleksiyonu by WoS Q "Q2"
Now showing 1 - 20 of 1222
- Results Per Page
- Sort Options
Article Citation - WoS: 79Citation - Scopus: 83The (2+1)-Dimensional Heisenberg Ferromagnetic Spin Chain Equation: Its Solitons and Jacobi Elliptic Function Solutions(Springer Heidelberg, 2021) Salahshour, Soheil; Mirzazadeh, Mohammad; Ahmadian, Ali; Baleanu, Dumitru; Khoshrang, Arian; Hosseini, KamyarThe search for exact solutions of nonlinear evolution models with different wave structures has achieved significant attention in recent decades. The present paper studies a nonlinear (2+1)-dimensional evolution model describing the propagation of nonlinear waves in Heisenberg ferromagnetic spin chain system. The intended aim is carried out by considering a specific transformation and adopting a modified version of the Jacobi elliptic expansion method. As a result, a number of solitons and Jacobi elliptic function solutions to the Heisenberg ferromagnetic spin chain equation are formally derived. Several three-dimensional plots are presented to demonstrate the dynamical features of the bright and dark soliton solutions.Article Citation - WoS: 32Citation - Scopus: 43A 3d Virtual Environment for Training Soccer Referees(Elsevier Science Bv, 2019) Isler, Veysi; O'Connor, Rory V.; Clarke, Paul M.; Gulec, Ulas; Yilmaz, MuratEmerging digital technologies are being used in many ways by and in particular virtual environments provide new opportunities to gain experience on real-world phenomena without having to live the actual real-world experiences. In this study, a quantitative research approach supported by expert validation interviews was conducted to determine the availability of virtual environments in the training of soccer referees. The aim is to design a virtual environment for training purposes, representing a real-life soccer stadium to allow the referees to manage matches in an atmosphere similar to the real stadium atmosphere. At this point, the referees have a chance to reduce the number of errors that they make in real life by experiencing difficult decisions that they encounter during the actual match via using the virtual stadium. In addition, the decisions and reactions of the referees during the virtual match were observed with the number of different fans in the virtual stadium to understand whether the virtual stadium created a real stadium atmosphere for the referees. For this evaluation, Presence Questionnaire (PQ) and Immersive Tendencies Questionnaire (ITQ) were applied to the referees to measure their involvement levels. In addition, a semi-structure interview technique was utilized in order to understand participants' opinions about the system. These interviews show that the referees have a positive attitude towards the system since they can experience the events occurred in the match as a first person instead of watching them from camera as a third person. The findings of current study suggest that virtual environments can be used as a training tool to increase the experience levels of the soccer referees since they have an opportunity to decide about the positions without facing the real-world risks.Article A 6-Point Subdivision Scheme and Its Applications for the Solution of 2nd Order Nonlinear Singularly Perturbed Boundary Value Problems(Amer inst Mathematical Sciences-aims, 2020) Baleanu, Dumitru; Ejaz, Syeda Tehmina; Anju, Kaweeta; Ahmadian, Ali; Salahshour, Soheil; Ferrara, Massimiliano; Mustafa, GhulamIn this paper, we first present a 6-point binary interpolating subdivision scheme (BISS) which produces a C-2 continuous curve and 4th order of approximation. Then as an application of the scheme, we develop an iterative algorithm for the solution of 2nd order nonlinear singularly perturbed boundary value problems (NSPBVP). The convergence of an iterative algorithm has also been presented. The 2nd order NSPBVP arising from combustion, chemical reactor theory, nuclear engineering, control theory, elasticity, and fluid mechanics can be solved by an iterative algorithm with 4th order of approximation.Article Citation - WoS: 19Citation - Scopus: 21About Maxwell's Equations on Fractal Subsets of R3(de Gruyter Poland Sp Z O O, 2013) Golmankhaneh, Ali K.; Baleanu, Dumitru; Golmankhaneh, Alireza K.In this paper we have generalized -calculus for fractals embedding in a"e(3). -calculus is a fractional local derivative on fractals. It is an algorithm which may be used for computer programs and is more applicable than using measure theory. In this Calculus staircase functions for fractals has important role. -fractional differential form is introduced such that it can help us to derive the physical equation. Furthermore, using the -fractional differential form of Maxwell's equations on fractals has been suggested.Article Citation - WoS: 30Citation - Scopus: 33Abundant New Solutions of the Transmission of Nerve Impulses of an Excitable System(Springer Heidelberg, 2020) Attia, Raghda A. M.; Baleanu, Dumitru; Khater, Mostafa M. A.This research investigates the dynamical behavior of the transmission of nerve impulses of a nervous system (the neuron) by studying the computational solutions of the FitzHugh-Nagumo equation that is used as a model of the transmission of nerve impulses. For achieving our goal, we employ two recent computational schemes (the extended simplest equation method and Sinh-Cosh expansion method) to evaluate some novel computational solutions of these models. Moreover, we study the stability property of the obtained solutions to show the applicability of them in life. For more explanation of this transmission, some sketches are given for the analytical obtained solutions. A comparison between our results and that obtained in previous work is also represented and discussed in detail to show the novelty for our solutions. The performance of the two used methods shows power, practical and their ability to apply to other nonlinear partial differential equations.Article Citation - WoS: 14Citation - Scopus: 17An Accurate Approximate-Analytical Technique for Solving Time-Fractional Partial Differential Equations(Wiley-hindawi, 2017) Salahshour, S.; Ahmadian, A.; Ismail, F.; Baleanu, D.; Bishehniasar, M.The demand of many scientific areas for the usage of fractional partial differential equations (FPDEs) to explain their real-world systems has been broadly identified. The solutions may portray dynamical behaviors of various particles such as chemicals and cells. The desire of obtaining approximate solutions to treat these equations aims to overcome the mathematical complexity of modeling the relevant phenomena in nature. This research proposes a promising approximate-analytical scheme that is an accurate technique for solving a variety of noninteger partial differential equations (PDEs). The proposed strategy is based on approximating the derivative of fractional-order and reducing the problem to the corresponding partial differential equation (PDE). Afterwards, the approximating PDE is solved by using a separation-variables technique. The method can be simply applied to nonhomogeneous problems and is proficient to diminish the span of computational cost as well as achieving an approximate-analytical solution that is in excellent concurrence with the exact solution of the original problem. In addition and to demonstrate the efficiency of the method, it compares with two finite difference methods including a nonstandard finite difference (NSFD) method and standard finite difference (SFD) technique, which are popular in the literature for solving engineering problems.Article Citation - WoS: 13Citation - Scopus: 14An Accurate Legendre Collocation Scheme for Coupled Hyperbolic Equations With Variable Coefficients(Editura Acad Romane, 2014) Doha, E. H.; Baleanu, Dumitru; Bhrawy, A. H.; Baleanu, D.; Abdelkawy, M. A.; MatematikThe study of numerical solutions of nonlinear coupled hyperbolic partial differential equations (PDEs) with variable coefficients subject to initial-boundary conditions continues to be a major research area with widespread applications in modern physics and technology. One of the most important advantages of collocation method is the possibility of dealing with nonlinear partial differential equations (NPDEs) as well as PDEs with variable coefficients. A numerical solution based on a Legendre collocation method is extended to solve nonlinear coupled hyperbolic PDEs with variable coefficients. This approach, which is based on Legendre polynomials and Gauss-Lobatto quadrature integration, reduces the solving of nonlinear coupled hyperbolic PDEs with variable coefficients to a system of nonlinear ordinary differential equations that is far easier to solve. The obtained results show that the proposed numerical algorithm is efficient and very accurate.Article Citation - WoS: 110Citation - Scopus: 112Active Laser Radar Systems With Stochastic Electromagnetic Beams in Turbulent Atmosphere(Optica Publishing Group, 2008) Cai, Yangjian; Korotkova, Olga; Eyyuboglu, Halil T.; Baykal, YahyaPropagation of stochastic electromagnetic beams through paraxial ABCD optical systems operating through turbulent atmosphere is investigated with the help of the ABCD matrices and the generalized Huygens-Fresnel integral. In particular, the analytic formula is derived for the cross-spectral density matrix of an electromagnetic Gaussian Schell-model (EGSM) beam. We applied our analysis for the ABCD system with a single lens located on the propagation path, representing, in a particular case, the unfolded double-pass propagation scenario of active laser radar. Through a number of numerical examples we investigated the effect of local turbulence strength and lens' parameters on spectral, coherence and polarization properties of the EGSM beam. (C) 2008 Optical Society of AmericaArticle Citation - Scopus: 1Adapting Integral Transforms To Create Solitary Solutions for Partial Differential Equations Via a New Approach(New York Business Global Llc, 2023) Baleanu, Dumitru; Saadeh, Rania; Qazza, Ahmad; Burqan, AliaaIn this article, a new effective technique is implemented to solve families of nonlinear partial differential equations (NLPDEs). The proposed method combines the double ARA-Sumudu transform with the numerical iterative method to get the exact solutions of NLPDEs. The suc-cessive iterative method was used to find the solution of nonlinear terms of these equations. In order to show the efficiency and applicability of the presented method, some physical applications are analyzed and illustrated, and to defend our results, some numerical examples and figures are discussed.Article Citation - WoS: 2Citation - Scopus: 4Adaptive Optics Compensation of M-Ary Pulse Position Modulated Communication Systems in Anisotropic Non-Kolmogorov Turbulent Atmosphere(Elsevier, 2021) Ata, Yalcin; Baykal, Yahya; Gokce, Muhsin CanerAdaptive optics compensation effect on the performance of an optical wireless communication system (OWC) employing M-ary pulse position modulation (PPM) scheme in anisotropic non-Kolmogorov turbulent atmosphere is investigated. Avalanche photodetector (APD) is used at the receiver side and log-normal channel that models the weak turbulence conditions is utilized. Anisotropy, generally resulting in better performance in OWC systems operating in the turbulent medium, combined with the adaptive optics applications will enhance the bit-error-rate (BER) of the OWC systems significantly. Results are obtained depending on various parameters for both the turbulent atmosphere and the receiver. Our work gives OWC system designers a perspective to optimize their design.Article Citation - WoS: 7Citation - Scopus: 6Adaptive Optics Correction of Beam Spread in Biological Tissues(Pergamon-elsevier Science Ltd, 2022) Baykal, YahyaBeam spread in turbulent biological tissues is examined when the tissue is excited with a collimated Gaussian laser beam. Adaptive optics correction is applied to the beam spread in the form of piston only (P Only), tilt only (T Only), piston + tilt (P + T), and the reduction in the beam spread is evaluated as com-pared to the no adaptive optics (No AO) corrected beam spread. No AO and adaptive optics corrected beam spread are expressed for various biological tissue types, against the variations in the strength co-efficient of the refractive-index fluctuations, source size, small length-scale factor of turbulence, tissue length, fractal dimension, characteristic lengths of heterogeneity and the wavelength. For the examined tissue types of liver parenchyma (mouse), intestinal epithelium (mouse), upper dermis (human) and deep dermis (mouse), No AO beam spread and the adaptive optics corrected beam spread are found to increase as the strength coefficient of the refractive-index fluctuations, tissue length, fractal dimension, the char-acteristic lengths of heterogeneity increase, and to decrease as the source size, small length-scale factor, wavelength increase. Reduction ratio of P + T correction is almost the same for all the evaluated cases which is 74%.(C) 2022 Elsevier Ltd. All rights reserved.Article Citation - WoS: 14Citation - Scopus: 16Adaptive Optics Effect on Performance of Bpsk-Sim Oceanic Optical Wireless Communication Systems With Aperture Averaging in Weak Turbulence(Pergamon-elsevier Science Ltd, 2020) Baykal, Yahya; Ata, Yalcin; Gokce, Muhsin CanerTurbulence-induced wavefront deformations cause the irradiance of an optical signal to fluctuate resulting a in serious degradation in the bit-error-rate (BER) performance of optical wireless communication (OWC) system. Adaptive optics is an effective technique to compensate for the wavefront aberrations to reduce the fluctuations in the received intensity. In this paper, we investigate how the adaptive optics technique affects the BER performance of an oceanic OWC (OOWC) system employing binary phase shift keying-subcarrier intensity modulation (BPSK-SIM) and aperture averaging. To evaluate BER performance in weak oceanic turbulence, the required entities such as the received optical power captured by a circular aperture and the aperture averaged scintillation index measuring the fluctuations in the received irradiance are derived. The effect of adaptive optics correction of various wavefront aberrations (i.e., tilt, defocus, astigmatism and the coma) on the BER performance is illustrated and the performance of the adaptive optics-OOWC system is compared to that of a non-adaptive optics OOWC system by the metric defined. (C) 2020 Elsevier Ltd. All rights reserved.Article Citation - WoS: 24Citation - Scopus: 32Advanced Exact Solutions To the Nano-Ionic Currents Equation Through Mts and the Soliton Equation Containing the Rlc Transmission Line(Springer Heidelberg, 2023) Miah, M. Mamun; Iqbal, M. Ashik; Alshehri, Hashim M.; Baleanu, Dumitru; Osman, M. S.; Chowdhury, M. AkherIn this study, the double (G '/G, 1/G)-expansion method is utilized for illustrating the improved explicit integral solutions for the two of nonlinear evolution equations. To expose the importance and convenience of our assumed method, we herein presume two models, namely the nano-ionic currents equation and the soliton equation. The exact solutions are generated with the aid of our proposed method in such a manner that the solutions involve to the rational, trigonometric, and hyperbolic functions for the first presumed nonlinear equation as well as the trigonometric and hyperbolic functions for the second one with meaningful symbols that promote some unique periodic and solitary solutions. The method used here is an extension of the (G '/G)-expansion method to rediscover all known solutions. We offer 2D and 3D charts of the various recovery solutions to better highlight our findings. Finally, we compared our results with those of earlier solutions.Article Citation - WoS: 32Citation - Scopus: 33Advanced Fractional Calculus, Differential Equations and Neural Networks: Analysis, Modeling and Numerical Computations(Iop Publishing Ltd, 2023) Karaca, Yeliz; Vazquez, Luis; Macias-Diaz, Jorge E.; Baleanu, DumitruMost physical systems in nature display inherently nonlinear and dynamical properties; hence, it would be difficult for nonlinear equations to be solved merely by analytical methods, which has given rise to the emerging of engrossing phenomena such as bifurcation and chaos. Conjointly, due to nonlinear systems' exhibiting more exotic behavior than harmonic distortion, it becomes compelling to test, classify and interpret the results in an accurate way. For this reason, avoiding preconceived ideas of the way the system is likely to respond is of pivotal importance since this facet would have effect on the type of testing run and processing techniques used in nonlinear systems. Paradigms of nonlinear science may suggest that it is 'the study of every single phenomenon' due to its interdisciplinary nature, which is another challenge encountered and needs to be addressed by generating and designing a systematic mathematical framework where the complexity of natural phenomena hints the requirement of identifying their commonalties and classifying their various manifestations in different nonlinear systems. Studying such common properties, concepts or paradigms can enable one to gain insight into nonlinear problems, their essence and consequences in a broad range of disciplines all forthwith. Fractional differential equations associated with non-local phenomena in physics have arisen as a powerful mathematical tool within a multidisciplinary research framework. Fractional differential equations, as one extension of the fractional calculus theory, can yield the evolution of various systems properly, which reinforces its position in mathematics and science while setting stage for the description of dynamic, complicated and nonlinear events. Through the reflection of the systems' actual properties, fractional calculus manifests unforeseeable and hidden variations, and thus, enables integration and differentiation, with the solutions to be approximated by numerical methods along with modeling and predicting the dynamics of multiphysics, multiscale and physical systems. Neural Networks (NNs), consisting of hidden layers with nonlinear functions that have vector inputs and outputs, are also considerably employed owing to their versatile and efficient characteristics in classification problems as well as their sophisticated neural network architectures, which make them capable of tackling complicated governing partial differential equation problems. Furthermore, partial differential equations are used to provide comprehensive and accurate models for many scientific phenomena owing to the advancements of data gathering and machine learning techniques which have raised opportunities for data-driven identification of governing equations derived from experimentally observed data. Given these considerations, while many problems are solvable and have been solved, efforts are still needed to be able to respond to the remaining open questions in the fields that have a broad range of spectrum ranging from mathematics, physics, biology, virology, epidemiology, chemistry, engineering, social sciences to applied sciences. With a view of different aspects of such questions, our special issue provides a collection of recent research focusing on the advances in the foundational theory, methodology and topical applications of fractals, fractional calculus, fractional differential equations, differential equations (PDEs, ODEs, to name some), delay differential equations (DDEs), chaos, bifurcation, stability, sensitivity, machine learning, quantum machine learning, and so forth in order to expound on advanced fractional calculus, differential equations and neural networks with detailed analyses, models, simulations, data-driven approaches as well as numerical computations.Article Citation - WoS: 2Citation - Scopus: 2Advanced Rheological Characterization of Asphalt Binders Modified With Eco-Friendly and Polymer-Based Additives Under Dynamic Loading(Multidisciplinary Digital Publishing Institute (MDPI), 2025) Almusawi, A.; Nasraldeen, S.T.N.This study explores the rheological performance of bitumen modified with a synthetic polymer (styrene–butadiene–styrene, SBS) and two environmentally sustainable additives—animal bone ash (AB) and waste cooking oil (WCO)—to enhance durability and deformation resistance under dynamic loading. Frequency sweep and linear amplitude sweep (LAS) tests were conducted to evaluate viscoelastic and fatigue behavior. SBS at 5% showed the highest elasticity and fatigue life, making it optimal for heavily trafficked pavements. Among bio-waste additives, 6% AB provided the highest stiffness and rutting resistance in laboratory tests; however, 5% AB offered a better balance between structural integrity and cracking resistance, making it more suitable for general pavement applications. WCO-modified binders demonstrated improved flexibility, with 4% WCO achieving the best balance between elasticity and softening, ideal for low-load or temperate environments. These results highlight the potential of combining synthetic and bio-based waste materials to tailor bitumen properties for sustainable and climate-responsive pavement design. © 2025 by the authors.Article Citation - WoS: 1Citation - Scopus: 1Agribusiness Resilience During the Covid-19 Pandemic: the Role of Credit Constraints(Czech Academy Agricultural Sciences, 2024) Ozsuca, Ekin ayseThis paper investigates the effect of pre-COVID credit constraints and the moderating role of government support on agribusiness resilience following the outbreak of COVID-19. Using a dataset covering 42 countries, we provide empirical evidence on how firm characteristics and credit constraints affect agribusinesses' likelihood of survival and performance during the pandemic. On the enterprise level, size, foreign ownership and gender of the manager are found to display a statistically significant relationship with closure and sales performance. The findings reveal that pre-existing credit constraints tended to magnify the negative impacts of the pandemic. Specifically, agribusinesses with better access to finance were less likely to experience a decline in sales and exit from the market and, hence, were in a better position to withstand pandemic-induced shock. The results further highlighted the positive role of government support on agribusiness resilience, whereas obtaining government aid was found to have no significant effect on moderating the link between financial conditions and resilience. Finally, the results showed that financially constrained agribusinesses are more likely to suffer from liquidity/cash flow problems and experience overdue financial obligations during the pandemic. In coping with their liquidity shortfalls, these agribusinesses were less likely to access formal credit and more likely to delay payments to suppliers/workers.Article Citation - WoS: 2Citation - Scopus: 1Airy-Type Relativistic Matter Wave(Elsevier Gmbh, 2021) Umul, Yusuf ZiyaA new relativistic Airy-type matter wave is introduced as a solution of the kinetic energy based wave equation. The parametric solution of the related differential equation is obtained. The total energy and momentum of the relativistic particle are derived by using a Bohmian type of decomposition of the kinetic energy based equation. The acceleration of the particle is also evaluated. The behavior of the matter wave is investigated numerically.Article Citation - WoS: 4Citation - Scopus: 5Almost Autonomous Training of Mixtures of Principal Component Analyzers(Elsevier Science Bv, 2004) Musa, MEM; de Ridder, D; Duin, RPW; Atalay, VIn recent years, a number of mixtures of local PCA models have been proposed. Most of these models require the user to set the number of submodels (local models) in the mixture and the dimensionality of the submodels (i.e., number of PC's) as well. To make the model free of these parameters, we propose a greedy expectation-maximization algorithm to find a suboptimal number of submodels. For a given retained variance ratio, the proposed algorithm estimates for each submodel the dimensionality that retains this given variability ratio. We test the proposed method on two different classification problems: handwritten digit recognition and 2-class ionosphere data classification. The results show that the proposed method has a good performance. (C) 2004 Elsevier B.V. All rights reserved.Article Citation - WoS: 203Citation - Scopus: 231Ammonia Removal From Anaerobically Digested Dairy Manure by Struvite Precipitation(Elsevier Sci Ltd, 2005) Uludag-Demirer, S; Demirer, GN; Chen, SAmmonia is one of the most important contaminants impairing the quality of water resources. When this is considered along with the fact that the global demand for nitrogenous fertilizers is in constant rise, the need for recovery as well as removal of nitrogen is well justified. Crystallization of N and P in the form of struvite (MgNH4PO4 center dot 6H(2)O), which is a slow releasing and valuable fertilizer, is one possible technique for this purpose. This study investigated the removal of NR4+ through struvite precipitation from the effluents of one- (R1) and two-phase (R2) anaerobic reactors digesting dairy manure. To force the formation of struvite in the anaerobic reactor effluents, Ma(2+) ion was added by using both Mg(OH)(2) and MgCl2 center dot 6H(2)O. To prevent the effect of different total phosphorus (TP) concentration in the effluents of RI and R2, as well as to not limit the formation of struvite, an excess amount Of PO43- (0.14 M) was added in the form of NaHPO4. Different stoichiometric Mg2+:NH4+:PO43- ratios were tested to determine the required Mg2+ concentrations for maximum NH4+ removal by keeping NH4+:PO43- ratio constant for the effluents of reactors RI and R2. The results revealed that very high NH4+ removal efficiencies (above 95%) were possible by adding Mg 21 ions higher than 0.06 M concentration in the effluents from reactors RI and R2. It was also observed that the initial pH adjustment to 8.50 using NaOH did not result in any significant increase in the removal of NH4+ and the removal of NH4+ in the reactors treated with MgCl2 center dot 6H(2)O was higher than those treated with Mg(OH)(2) for the same Mg2+ concentration. (c) 2005 Published by Elsevier Ltd.Article Citation - WoS: 23Citation - Scopus: 31An Integrated Framework on Soundscape Perception and Spatial Experience by Adapting Post-Occupancy Evaluation Methodology(Sage Publications Inc, 2018) Aburawis, Ayad A. Mohamed; Yorukoglu, Papatya Nur DokmeciThe effecting factors of soundscape perception and space experience have a very close relationship. This study aims to synthesize the diversity of soundscape classifications and schemes and unify such factorial variations in order to develop an integrated framework for soundscape perception and spatial experience within a systematic review of recent progress and by adapting post-occupancy evaluation methodology. First, factors under soundscape perception and space experience are reviewed in detail and merged to form conceptual classification models. Six soundscape perception factors are formed as (1) sonic, (2) spatial, (3) temporal, (4) psychological, (5) behavioural and (6) personal. Similarly, five space experience factors are formed as (1) user, (2) usage, (3) architectural design, (4) social context and (5) physical environment. All related items in the literature are presented and the sub-items under each factor are exemplified. Second, factors under the merged conceptual models are integrated by considering occupants' experience of space regarding their variance in perception of soundscapes through acoustical post-occupancy evaluation. An adapted study design is proposed under indicative, investigative and diagnostic stages of the post-occupancy evaluation by presenting the methods, data types and factorial correlations for each stage.
