Nanopartiküller ve Farklı Geometrilere Sahip Kanatçıklar Kullanarak Borularda Isı Transferi İyileştirme
No Thumbnail Available
Date
2025
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Open Access Color
OpenAIRE Downloads
OpenAIRE Views
Abstract
Enerji, havacılık ve otomotiv gibi sektörlerde mühendislik uygulamaları geliştirmek, ısı transfer verimliliğini artırmak için yaratıcı yöntemler gerektirir. Isı transfer yüzey alanını genişleterek, ısı eşanjörlerindeki boru kanatçıkları termal performansı artıran temel parçalardır. Ancak, tipik kanatçık tasarımlarının en iyi performansı göstermesini engelleyen birkaç kısıtlama vardır. Nanopartiküller, akışkan özelliklerini ve termal iletkenliği artırarak daha etkili ısı iletimi sağlar. Geleneksel soğutma sıvılarından daha fazla termal iletkenlik sunarak, nanofluidlerin kullanımı boru kanatçık sistemlerinde ısı transferini artırır. Bu çalışmanın amacı, farklı geometrilerde kanatçıklı bir boru tasarımı yaparak en etkili tasarımda farklı konsantrasyonlarda sabit boyutta nanoakışkanlar kullanarak ısı transferini incelemektir. Kanatçık çalışması için çeşitli konfigürasyonlar incelendi (üçgen, dikdörtgen ve daire). Üçgen kanatçıklı borunun en uygun olduğu çalışmalar sonucunda bulundu. Üçgen kanatçıklı yapıya farklı konsantrasyonlarda nano akışlar eklendi. Sonuç olarak en iyi nano akış konsantrasyonu ve geometri yapısı bulundu. En iyi nanoakış Al₂O₃-TiO₂ ve konstrasyonu %10-6' dır. En iyi geometri üçgen yapılı fin olarak bulunmuştur.
Developing electrical applications in sectors such as energy, electricity, and automotive requires creative approaches to enhance heat transfer. By increasing the heat transfer surface, tube fins in heat exchangers are key components that enhance thermal performance. However, there are several limitations that prevent typical fin designs from achieving optimal performance. Nanoparticles provide more effective heat dissipation by improving system properties and thermal conductivity. Offering greater thermal conductivity than conventional cooling systems, the use of nanofluids enhances heat transfer in tube-fin systems. This study aims to design a finned tube with different geometries and investigate heat transfer using different amounts of fixed-sized nanofluids to achieve the most effective design. Various shapes were examined for the fin study (triangular, rectangular, and circular). Studies found that the triangular finned tube was the most suitable. Different nanostructures are added to the triangular finned structures. Consequently, the optimal nanostructure and pressure expansion are achieved. The best nanoflow was found to be Al₂O₃-TiO₂ with a concentration of 10-6%. The best geometry was found to be a triangular fin.
Developing electrical applications in sectors such as energy, electricity, and automotive requires creative approaches to enhance heat transfer. By increasing the heat transfer surface, tube fins in heat exchangers are key components that enhance thermal performance. However, there are several limitations that prevent typical fin designs from achieving optimal performance. Nanoparticles provide more effective heat dissipation by improving system properties and thermal conductivity. Offering greater thermal conductivity than conventional cooling systems, the use of nanofluids enhances heat transfer in tube-fin systems. This study aims to design a finned tube with different geometries and investigate heat transfer using different amounts of fixed-sized nanofluids to achieve the most effective design. Various shapes were examined for the fin study (triangular, rectangular, and circular). Studies found that the triangular finned tube was the most suitable. Different nanostructures are added to the triangular finned structures. Consequently, the optimal nanostructure and pressure expansion are achieved. The best nanoflow was found to be Al₂O₃-TiO₂ with a concentration of 10-6%. The best geometry was found to be a triangular fin.
Description
Keywords
Makine Mühendisliği, Mechanical Engineering
Turkish CoHE Thesis Center URL
Fields of Science
Citation
WoS Q
Scopus Q
Source
Volume
Issue
Start Page
End Page
83
Collections
Page Views
1
checked on Jan 02, 2026
Google Scholar™
Sustainable Development Goals
4
QUALITY EDUCATION

6
CLEAN WATER AND SANITATION

7
AFFORDABLE AND CLEAN ENERGY

8
DECENT WORK AND ECONOMIC GROWTH

9
INDUSTRY, INNOVATION AND INFRASTRUCTURE

10
REDUCED INEQUALITIES

11
SUSTAINABLE CITIES AND COMMUNITIES

14
LIFE BELOW WATER

16
PEACE, JUSTICE AND STRONG INSTITUTIONS

17
PARTNERSHIPS FOR THE GOALS
