Türkiye'nin Bilgisayar Mühendisliği Lisansüstü Araştırma Ortamının Bilimmetrik Haritalaması
No Thumbnail Available
Date
2025
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Open Access Color
OpenAIRE Downloads
OpenAIRE Views
Abstract
Bu çalışma, Türkiye'deki üniversitelerde hazırlanmış 12.778 adet bilgisayar mühendisliği yüksek lisans ve doktora tezini incelemektedir. Tezler 1984 ile 2024 yılları arasında tamamlanmıştır. Ana amaç, lisansüstü araştırmaların son 40 yılda nasıl büyüdüğünü, değiştiğini ve geliştiğini göstermektir. Bu çalışmada kullanılan veri seti, Türkiye'deki tüm lisansüstü tezlerin resmi olarak saklandığı YÖK Ulusal Tez Merkezi'nden alınmıştır. Ana temaları görmek için BERTopic ve sinir ağı gömlemeleri kullanılmıştır. Ayrıca LDA ve TF-IDF yöntemleri de uygulanmıştır. Metin, lemmatization ve n-gram gibi basit adımlarla temizlenmiştir. Bu yöntemlerle çalışma yaklaşık 90 konu grubu bulmuş ve bu konuların yıllara göre nasıl değiştiğini göstermiştir. 2015'ten sonra tez sayıları hızlı biçimde artmıştır, çünkü Türkiye'deki lisansüstü programlar genişlemiştir. Siber güvenlik, blokzincir, tarımda yapay zekâ ve tıbbi görüntü analizi gibi bazı konular çok hızlı şekilde popüler olmuştur. Sonuçlar ayrıca yüksek lisans ve doktora tezleri arasında bir fark olduğunu da göstermektedir. Doktora tezleri daha teorik konulara odaklanmakta, örneğin optimizasyon algoritmaları, gizlilik konuları ve ileri modelleme gibi alanlara yönelmektedir. Yüksek lisans tezleri ise genelde daha uygulamalıdır ve yüz tanıma, mobil uygulamalar veya akıllı ev sistemleri gibi konulara yoğunlaşmaktadır. Çalışma ayrıca tezlerin %33.6'sının ana konu gruplarıyla iyi eşleşmediğini göstermiştir. Bu tezler 'alışılmadık' ya da uç nokta çalışmalar olarak görülebilir. Genel olarak bu çalışma, Türkiye'de bilgisayar mühendisliği araştırmalarına yönelik büyük ölçekli ilk çalışmalardan biridir. Sonuçlar, hem tez sayısındaki büyümeyi hem de konulardaki çeşitliliğin arttığını göstermektedir.
This study examines 12,778 master's and PhD theses in Computer Engineering from universities in Türkiye. The theses were completed between 1984 and 2024. The main goal is to show how postgraduate research has grown, changed, and improved over the last 40 years. All theses I used came from the YÖK National Thesis Center, since that is where Türkiye keeps its graduate work. I first cleaned the texts myself with simple steps like joining title+abstract, doing basic lemmatization, and catching a few n-grams. After that, I tried several modelling tools in no fixed order. BERTopic was the main one because it uses neural embeddings, but I also checked LDA and even TF-IDF just to compare what they highlight. They did not produce the same structure, yet together they helped me understand the overall shape of the data. In the end, the models showed nearly ninety topic groups. The number of theses also rose a lot after 2015 as more graduate programs opened. Some themes suddenly became popular too — for example cybersecurity, blockchain, agricultural AI, and medical image work. There was also a clear difference between degree levels. PhD theses usually went toward theory related topics like optimization, privacy, or advanced modelling, while master's work stayed closer to practical tasks. Master's theses are usually more practical and focus on things such as face recognition, mobile apps, or smart home systems. The study also found that 33.6% of the theses do not match the main topic groups very well. These studies can be seen as 'unconventional' or outliers. Overall, this study is one of the first large-scale studies of computer engineering research in Türkiye. The results show both the growth in the number of theses and the increasing variety of topics.
This study examines 12,778 master's and PhD theses in Computer Engineering from universities in Türkiye. The theses were completed between 1984 and 2024. The main goal is to show how postgraduate research has grown, changed, and improved over the last 40 years. All theses I used came from the YÖK National Thesis Center, since that is where Türkiye keeps its graduate work. I first cleaned the texts myself with simple steps like joining title+abstract, doing basic lemmatization, and catching a few n-grams. After that, I tried several modelling tools in no fixed order. BERTopic was the main one because it uses neural embeddings, but I also checked LDA and even TF-IDF just to compare what they highlight. They did not produce the same structure, yet together they helped me understand the overall shape of the data. In the end, the models showed nearly ninety topic groups. The number of theses also rose a lot after 2015 as more graduate programs opened. Some themes suddenly became popular too — for example cybersecurity, blockchain, agricultural AI, and medical image work. There was also a clear difference between degree levels. PhD theses usually went toward theory related topics like optimization, privacy, or advanced modelling, while master's work stayed closer to practical tasks. Master's theses are usually more practical and focus on things such as face recognition, mobile apps, or smart home systems. The study also found that 33.6% of the theses do not match the main topic groups very well. These studies can be seen as 'unconventional' or outliers. Overall, this study is one of the first large-scale studies of computer engineering research in Türkiye. The results show both the growth in the number of theses and the increasing variety of topics.
Description
Keywords
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrol, Computer Engineering and Computer Science and Control
Turkish CoHE Thesis Center URL
Fields of Science
Citation
WoS Q
Scopus Q
Source
Volume
Issue
Start Page
End Page
63
Collections
Google Scholar™
Sustainable Development Goals
3
GOOD HEALTH AND WELL-BEING

4
QUALITY EDUCATION

7
AFFORDABLE AND CLEAN ENERGY

8
DECENT WORK AND ECONOMIC GROWTH

9
INDUSTRY, INNOVATION AND INFRASTRUCTURE

11
SUSTAINABLE CITIES AND COMMUNITIES
